More OCAML Algorithms, Methods \& Diversions

In More OCaml John Whitington takes a meandering tour of functional programming with OCaml, introducing various language features and describing some classic algorithms. The book ends with a large worked example dealing with the production of PDF files. There are questions for each chapter together with worked answers and hints.

More OCaml will appeal both to existing OCaml programmers who wish to brush up their skills, and to experienced programmers eager to explore functional languages such as OCaml. It is hoped that each reader will find something new, or see an old thing in a new light. For the more casual reader, or those who are used to a different functional language, a summary of basic OCaml is provided at the front of the book.

JOHN WHITINGTON founded a software company which uses OCaml extensively. He teaches functional programming to students of Computer Science at the University of Cambridge. His other books include "PDF Explained" (O'Reilly, 2012) and "OCaml from the Very Beginning" (Coherent, 2013).

More OCAML

Algorithms, Methods \& Diversions

John Whitington

COHERENT PRESS

Cambridge
Published in the United Kingdom by Coherent Press, Cambridge
(C) Coherent Press 2014

This publication is in copyright. Subject to statutory exception no reproduction of any part may take place without the written permission of Coherent Press.

First published August 2014
A catalogue record for this book is available from the British Library
ISBN 978-0-9576711-1-9 Paperback
by the same author
PDF Explained (O'Reilly, 2012)
OCaml from the Very Beginning (Coherent, 2013)

Contents

Summary of Basic OCaml ix
Our Working Environment xiii
1 Unravelling "Fold" 1
2 Being Lazy 9
3 Named Tuples with Records 15
4 Generalized Input/Output 21
5 Streams of Bits 27
6 Compressing Data 35
7 Labelled and Optional Arguments 51
8 Formatted Printing 57
9 Searching for Things 63
10 Finding Permutations 71
11 Making Sets 79
12 Playing Games 93
Generating PDF Documents - An Extended Example 98
13 Representing Documents 101
14 Writing Documents 107
15 Pretty Pictures 117
16 Adding Text 123
Answers to Questions 133
Hints for Questions 191
Coping with Errors 197
Index 203

Preface

When I wrote "OCaml from the Very Beginning", the intention was to have a book with no prerequisites a bright individual, new to programming, could follow it. Because of this, and for length concerns, plenty of interesting material had to be omitted. This text, not being constrained in the same way, contains a variety of topics which require some existing experience with a functional language. Those who have read the previous text should have no problem with this one. Equally, it should be comprehensible to a functional programmer familiar with another language such as Standard ML or Haskell. The reader may need to make occasional reference to the OCaml manual.

There are, typically, two different activities when writing programs larger than a few dozen lines: firstly, dealing with the challenges of complexity inherent in the problem, by finding appropriate abstraction mechanisms and, secondly, finding and using the wide range of third-party libraries available for a given language. Most projects involve a combination of the two. In this text we concentrate wholly on the former, using nothing other than the OCaml Standard Library. Keeping up with the myriad third-party OCaml libraries is a task better suited to other media.

The book consists of sixteen short chapters falling broadly into three categories. Some introduce pieces of OCaml syntax with worked examples. Some survey practical topics such as input/output. Some cover little diversions or puzzles. The main matter of the book ends with a lengthy worked example: a program to build PDF files containing computer-generated drawings and text. There are full answers and hints for all questions in the book, and additional material in the online resources.

Acknowledgments

The quotation in Chapter 6 is taken from ISO-32000 © International Organization for Standardization. The tables of codes in the same chapter are taken from ITU-T T. 30 © International Telecommunication Union. The presentation of the balancing operation for Red-Black trees in Chapter 11 and its functional implementation is due to Chris Okasaki, as described in the invaluable "Purely Functional Data Structures" (Cambridge University Press, ISBN 978-0521663502, 1998). Chapter 12 was inspired by a University of Cambridge Computer Science Tripos exam question set by Lawrence C. Paulson in 1999. Question 3 of that chapter is due to Peter D. Schumer in "Mathematical Journeys" (John Wiley \& Sons, ISBN 0-471-22066-3, 2004).

I am grateful to the many colleagues and friends with whom I have been able to discuss OCaml style and substance, including Mark Shinwell, Leo White, Daniel Bünzli, Anil Madhavapeddy, Stephen Dolan and many others whom I have forgotten. Helpful comments on an earlier draft were provided by Stefan Schmiedl, Manuel Cornes, Jonas Bülow, Emmanuel Delabode, Mario Alvarez Picallo, Giannis Tsaraias, Emmanuel Oga, and André Bjärby.

Summary of Basic OCaml

This chapter contains a summary of each OCaml construct used in the book, together with some examples. Pieces of OCaml syntax not contained in this chapter will be introduced as and when they are needed throughout the rest of the book. Existing OCaml programmers may skip this chapter.

Simple Data Types

Integers min_int ...-3-2-10123... max_int of type int. Booleans true and false of type bool. Characters of type char like ' X ' and '!'.

Mathematical operators $+-* / \bmod$ which take two integers and give another.

$\Longrightarrow \quad$| $6 * 2$ |
| :--- |
| 12 |

Operators $=\ll=\gg=<>$ which compare two values and evaluate to either true or false.

$$
\begin{array}{ll}
& 1+2+3=1 * 2 * 3 \\
& \text { true }
\end{array}
$$

The conditional if expression1 then expression2 else expression3, where expresssion1 has type bool and expression2 and expression3 have the same type as one another.

```
    if 4*3 > 2 * 2 then 1 else 0
1
```

The boolean operators \&\& (logical AND) and || (logical OR) which allow us to build compound boolean expressions.

$$
\begin{array}{ll}
& 1=2 \| 2=2 \\
\Longrightarrow \quad & \text { true }
\end{array}
$$

Tuples to combine a fixed number of elements (a, b), (a, b, c) etc. with types $\alpha \times \beta, \alpha \times \beta \times \gamma$
etc. For example, ($1, ~ ' 1 '$) is a tuple of type int \times char. On the screen, OCaml writes 'a for α etc.

Strings, which are sequences of characters written between double quotes and are of type string. For example, "one" has type string.

Names and Functions

Assigning a name to the result of evaluating an expression using the let name $=$ expression construct.

$$
\text { let } x=5>2 \quad x \text { is new, and is false }
$$

Building compound expressions using let name1 $=$ expression1 in let name $2=\operatorname{expression} 2$ in \ldots

```
let x = 4 in let y = 5 in x + y
```

Anonymous (un-named) functions fun name -> expression.

$$
\begin{aligned}
& (\text { fun } x->x * 2) 4 \\
\Longrightarrow \quad & 8
\end{aligned}
$$

Making operators into functions as in (<) and (+).

$$
(+) 12 \Longrightarrow 3
$$

Functions, introduced by let name argument1 argument $2 \ldots=$ expression. These have type $\alpha \rightarrow \beta$, $\alpha \rightarrow \beta \rightarrow \gamma$ etc. for some types α, β, γ etc. For example, let $\mathrm{f} \mathrm{a} \mathrm{b}=\mathrm{a}>\mathrm{b}$ is a function of type α $\rightarrow \alpha \rightarrow$ bool.

Recursive functions, which are introduced in the
same way, but using let rec instead of let. For example, here is a function g which calculates the smallest power of two greater than or equal to a given positive integer, using the recursive function f:

```
let rec f x y =
    if y<x then f x (2 * y) else y
```

let $\mathrm{g} \mathrm{z}=\mathrm{f} \mathrm{z} 1$

Mutually recursive functions, introduced by writing let rec $f x=\ldots$ and $g y=\ldots$ and \ldots

Pattern Matching

Matching patterns using match expression 1 with pattern 1 | ... -> expression 2 | pattern 2 | ... -> expression3 | ...The expressions expression 2 , expression 3 etc. must have the same type as one another, and this is the type of the whole match ... with expression. The special pattern _ which matches anything.

```
match x with
    0 -> 1
| 1 | 2 -> 3
| _ -> 4
```

Matching two or more things at once, using commas to separate as in match a, b with 0,0 -> expression1|x, y -> expression $2 \mid \ldots$

```
match x, y, z with
    0, 0, 0 -> true
| _, _, - -> false
```


Lists

Lists, which are ordered collections of zero or more elements of like type. They are written between square brackets, with elements separated by semicolons e.g. [1; 2;3;4;5]. If a list is non-empty, it has a head, which is its first element, and a tail, which is the list composed of the rest of the elements.

The : : "cons" operator, which adds an element to the front of a list. The @ "append" operator, which concatenates two lists together.

```
1 :: [2; 3] \Longrightarrow [1; 2; 3]
[1; 2] @ [3] \Longrightarrow [1; 2; 3]
```

Lists and the : : "cons" symbol may be used for pattern matching to distinguish lists of length zero, one, etc. and with particular contents. For example, we can calculate the length of a list:

```
let rec length l =
    match l with
        [] -> 0
    | _::t -> 1 + length t
```


Exceptions

Defining exceptions with exception name. They can carry extra information by adding of type. Raising exceptions with raise. Handling exceptions with try ... with...

```
exception Problem of int
```

```
let \(\mathrm{f} x \mathrm{y}=\)
    if \(y=0\)
        then raise (Problem \(x\) )
        else \(\mathrm{x} / \mathrm{y}\)
let \(\mathrm{g} x \mathrm{y}=\)
    try \(f x y\) with Problem \(p\)-> \(p\)
```


Partial Application

Partial application of functions by giving fewer than the full number of arguments. Partial application with functions built from operators.
let add $\mathrm{x} \mathrm{y}=\mathrm{x}+\mathrm{y}$
List.map (add 3) [1; 2; 3]
\Longrightarrow [4; 5; 6]
List.map ((+) 3) [1; 2; 3]
$\Longrightarrow[4 ; 5 ; 6]$

New Data Types

New types with type name = constructor 1 of type 1 | constructor 2 of type $2 \mid \ldots$ Pattern matching on them as with the built-in types. Polymorphic types.

```
type colour =
    Red | Blue | Green | Grey of int
```

[Red; Blue; Grey 16] this has type colour list

```
type 'a tree =
    Lf
    | Br of 'a tree * 'a * 'a tree
```

For example, $\operatorname{Br}(L f, \quad ' X ', B r(L f, ' Y ', L f))$ has type char tree. A useful built-in data type is the option type, defined as type 'a option = None | Some of 'a. A type can be polymorphic in more than one type parameter, for example ('a, 'b) Hashtbl.t, as in the Standard Library.

Basic Input / Output

The value () and its type unit. Input channels of type in_channel and output channels of type out_channel. Built-in functions such as open- in, close_in, open_out, close_out, input_char, output_char etc. for reading from and writing to them respectively.

Mutable State

References of type α ref. Building them using ref, accessing their contents using! and updating them using the $:=$ operator.

```
# let p = ref 0;;
val p : int ref = {contents = 0}
# p := 5;;
- : unit = ()
# !p;;
- : int = 5
```

Arrays of type α array written like $[|1 ; 2 ; 3|]$. Creating an array with the built-in function Array.make, finding its length with Array. length, accessing an element with a.(subscript). Updating with a.(subscript) <-expression.

```
let swap a x y =
    let t = a.(x) in
        a.(x) <- a.(y); a.(y) <- t
```

Bracketing expressions together with begin and end instead of parentheses for readability.

```
if x = y then
    begin
        a := b;
```

```
        c := d
    end
else
    e := f
```

Performing an action many times based on a boolean condition with the while boolean expression do expression done construct.

```
while !x<y do x := !x * 2 done
```

Performing an action a fixed number of times with a varying parameter using the for name = start to end do expression done construct.
for $x=1$ to 10 do print int x done

Floating-point Numbers

Floating-point numbers min_float ... max_float of type float. Floating-point operators +. *. - . . ** and built-in functions sqrt log etc.
2. $* * 0.2 \Longrightarrow 1.1486983549970351$

The OCaml Standard Library

Using functions from the OCaml Standard Library with the form Module.function. For example, List.map, String.length, Array. copy etc. The Buffer module allows the efficient collation of strings into larger ones.

Simple Modules

Writing modules in .ml files. Building interfaces in .mli files with types and the val keyword. For example, the.$m l$ file with contents let $f x=x+1$ might have the interface val f : int -> int

Compiling Programs

The ocamlc and ocamlopt compilers. For example:
ocamlc - o x x.ml builds \times (or x.exe) from $x . m l$ with the bytecode compiler.
ocamlopt $-0 \times x . m l$ builds \times (or $x . e x e$) from $x . m l$ with the native code compiler.

Our Working Environment

Every piece of code in an example, and every answer to an end-of-chapter question can be downloaded from the book's website athttp://www.ocaml-book.com/and built on the reader's machine. The programs should work on Unix (including Linux), Mac OS X, and Microsoft Windows.

Since several of our programs require tail-recursive list functions, we provide a wrapper to the Standard Library List module which provides them. In addition, three small utility functions (take, drop, and from) are provided in a Util module. These modules are contained in the module More. So, by writing open More, the Util module is available, and all functions in the List module are tail-recursive.

If using OPAM, the OCaml Package Manager, this package may be installed by writing opam install more-ocaml. Then (or by installing in another manner - see the online resources for details) our modules are available in the top level:

```
OCaml
```

```
# #use "topfind";;
- : unit = ()
Findlib has been successfully loaded. Additional directives:
    #require "package";; to load a package
    #list;; to list the available packages
    #camlp4o;; to load camlp4 (standard syntax)
    #camlp4r;; to load camlp4 (revised syntax)
    #predicates "p,q,...";; to set these predicates
    Topfind.reset();; to force that packages will be reloaded
    #thread;; to enable threads
```

- : unit = ()
\# \#require "more";;
/Users/john/.opam/4.02.0/lib/ocaml/more.cma: loaded
/Users/john/.opam/4.02.0/lib/more: added to search path
\# open More; ;
\# Util.take;
- : 'a list -> int -> 'a list = <fun>

They are also available when compiling stand-alone programs with the bytecode compiler ocamlc or the native code compiler ocamlopt:

```
ocamlfind ocamlc -package more program.ml -linkpkg -o program
ocamlfind ocamlopt -package more program.ml -linkpkg -o program
```

Further instructions, including for use on platforms where OPAM is not supported, are given in the online resources.

Timing with the Unix module

Sometimes we will wish to see how much time a piece of code takes. This can be achieved using the function gettimeofday from the Unix module (contrary to its name, this module also works on Windows). This function returns a floating-point number representing the time since 00:00:00 GMT, Jan. 1, 1970, in seconds:

```
OCaml
# #use "topfind";;
- : unit = ()
Findlib has been successfully loaded. Additional directives:
    #require "package";; to load a package
    #list;; to list the available packages
    #camlp4o;; to load camlp4 (standard syntax)
    #camlp4r;; to load camlp4 (revised syntax)
    #predicates "p,q,...";; to set these predicates
    Topfind.reset();; to force that packages will be reloaded
    #thread;; to enable threads
- : unit = ()
# #require "unix";;
/Users/john/.opam/4.01.0/lib/ocaml/unix.cma: loaded
# Unix.gettimeofday ();;
- : float = 1407679005.43897
# Unix.gettimeofday ();;
- : float = 1407679011.08860302
```

Now, by evaluating Unix.gettimeofday (), running a piece of code, and evaluating Unix.gettimeofday () once more, we can calculate the elapsed time. To use the Unix module when compiling stand-alone programs:

```
ocamlfind ocamlc -package more,unix program.ml -linkpkg -o program
ocamlfind ocamlopt -package more,unix program.ml -linkpkg -o program
```


Chapter 1

Unravelling "Fold"

The List module in OCaml's Standard Library defines two intriguingly-named functions over lists:

```
fold_left : ( }\alpha->\beta->\alpha)->\alpha->\beta\mathrm{ list }->
```



```
let rec fold_left f a l =
    match l with
        [] -> a
    | h::t -> fold_left f (f a h) t
let rec fold_right f l a =
    match l with
        [] -> a
    | h::t -> f h (fold_right f t a)
```

What do they do? And why are they considered important enough to include in the Standard Library? As we shall see, they abstract the idea of recursion over lists with an accumulator in a most delightfully generic way.

Let us first examine fold_left and its rather complicated type. The first argument is itself a function, which takes the existing accumulator and an element from the input list, combines them in some fashion, and returns a new accumulator, ready for the next element. So, in general, the first argument has type α $\rightarrow \beta \rightarrow \alpha$. Then we have an initial value for the accumulator, which must have type α, and an input list of type β list. The return value is the final accumulator, so that must have type α. We can annotate the function as follows:

```
fold_left : ( }\alpha->\beta->\alpha)->\alpha->\beta\mathrm{ list }->
let rec fold_left f a l = function, initial accumulator, input list
    match l with
        [] -> a no more input - return the accumulator
    | h::t -> fold_left f (f a h) t apply function to a and h, making new a
```

We can find the sum of a list of numbers:

```
    fold_left ( + ) 0 [1; 2; 3]
fold_left ( + ) 1 [2; 3]
fold_left ( + ) 3 [3]
fold_left ( + ) 6 []
#}
```

Here, α and β are both int. The function (+) has the right type, and we use for the initial accumulator the identity element for $(+)$ which is 0 since for all $x, x+0=x$ (we cannot take the initial accumulator from the list itself since our function must have a result for the sum of all the integers in an empty list.)

It might appear to the reader that this is more complicated than the simple recursive solution, but to the experienced functional programmer, using fold_left is in fact easier to read. Let us find the maximum number in a list using fold_left:

```
    fold_left max min_int [2; 4; 6; 0; 1]
    fold_left max 2 [4; 6; 0; 1]
    fold_left max 4 [6; 0; 1]
    fold_left max 6 [0; 1]
    fold_left max 6 [1]
    fold_left max 6 []
     }
```

Here max is the built-in function for finding the larger of two things, and min_int is the built-in value of the smallest possible integer. We can use a similar scheme to define functions on lists of booleans:

```
all : bool list }->\mathrm{ bool
any : bool list }->\mathrm{ bool
let all l = fold_left ( && ) true l
let any l = fold_left ( || ) false l
```

The all function is true if and only if all items in the list are true; the any function if at least one is. What can happen when α and β are different? How about making the accumulator a list too? We can use List.mem to turn an arbitrary list into a set by consulting the existing accumulator before putting an element in:

```
setify : \alpha list }->\alpha\mathrm{ list
let setify l =
    fold_left (fun a e -> if List.mem e a then a else e :: a) [] l
```

We are using List. mem to decide whether to add each element to the accumulator or discard it.

What about fold_right?

Here is the function again:

```
fold_right : (\alpha 
let rec fold_right f l a =
    match l with
        [] -> a
    | h::t -> f h (fold_right f t a)
```

The fold_left function applied the given function over the elements in the input list from the left hand side. In contrast, fold_right processes them from the right, by changing the evaluation order. Consider, for example, our summation example:

```
        fold_left ( + ) 0 [1; 2; 3]
        fold_left ( + ) 1 [2; 3]
        fold_left ( + ) 3 [3]
        fold_left ( + ) 6 []
        #
        fold_right ( + ) [1; 2; 3] 0
        \Longrightarrow ( + ) 1 (fold_right ( + ) [2; 3] 0)
        C ( + ) 1 (( + ) 2 (fold_right ( + ) [3] 0))
        \Longrightarrow ( + ) 1 (( + ) 2 (( + ) 3 (fold_right ( + ) [] 0)))
        \Longrightarrow ( + ) 1 (( + ) 2 (( + ) 3 0))
        C ( + ) 1 (( + ) 2 3)
        C (+) 15
        C
```

See how the accumulating of values starts from the right hand side. Note also that fold_right is not tail-recursive (the intermediate expression it builds is proportional to the size of the input). We can define map simply as a use of fold_right.

```
map : (\alpha ->\beta) ->\alpha list }->\beta\mathrm{ list
let map f l =
    fold_right (fun e a -> f e :: a) l []
```

Who would have thought that fold_right was the more fundamental function? At the cost of a list reversal, we can make fold_right tail-recursive by defining it in terms of fold_left:

```
fold_right : (\alpha 
let fold_right f l e =
    fold_left (fun x y -> f y x) e (List.rev l)
```

Sometimes we want to provide an initial accumulator value which is not the identity element for the computation. For example, applying : : over an input list with fold_right is not very interesting, yielding a function which returns a copy of its input:

```
copy : \alpha list }->\alpha\mathrm{ list
let copy l =
    fold_right (fun e a -> e :: a) l []
```

But if we supply a non-empty list as the initial value of the accumulator, we have the append function:

```
append : }\alpha\mathrm{ list }->\alpha\mathrm{ list }->\alpha\mathrm{ list
let append x y =
    fold_right (fun e a -> e :: a) x y
```

We can use a more complicated accumulator, such as a tuple. In this example, we replicate the List.split function which, given a list of pairs, yields a pair of lists:

```
split : (\alpha\times\beta) list }->\alpha\mathrm{ list }\times\beta\mathrm{ list
let split l =
    fold_right
        (fun (x, y) (xs, ys) -> (x :: xs, y :: ys))
        l
        ([], [])
```

For example, split [(1, "one"); (2, "two")] evaluates to ([1; 2], ["one"; "two"]).

A word of caution

One very simple definition for the function concat which concatenates all lists in a list of lists is given by:

```
concat : }\alpha\mathrm{ list list }->\alpha\mathrm{ list
```

let concat l = fold_left (@) [] l

We use the append function to accumulate the lists into a single list one by one:

```
    fold_left ( @ ) [] [[1;2]; [3]; [4;5]]
\Longrightarrow fold_left ( @ ) [1; 2] [[3]; [4; 5]]
\Longrightarrow fold_left ( @ ) [1; 2; 3] [[4; 5]]
\Longrightarrow fold_left ( @ ) [1; 2; 3; 4; 5] []
\Longrightarrow [1; 2; 3; 4; 5]
```

However, the order of evaluation is such that the append function @ (which takes time proportional to the length of its first argument) is used inefficiently - we process the list again and again.

Folding over trees

For the usual definition of a binary tree, we can define a fold. There are two accumulators, one for everything from the left sub-tree, and one for everything from the right sub-tree. The supplied function combines both into a new accumulator.


```
type 'a tree =
    Lf
    | Br of 'a * 'a tree * 'a tree
let rec fold_tree f e t =
    match t with
        Lf -> e
    | Br (x, l, r) -> f x (fold_tree f e l) (fold_tree f e r)
```

Here is an example tree:

Functions for the size of a tree, and the sum of an integer tree are now easy, without explicit recursion:

```
tree_size : \alpha tree }->\mathrm{ int
tree_sum : int tree }->\mathrm{ int
let tree_size t = fold_tree (fun _ l r -> 1 + l + r) 0 t
let tree_sum t = fold_tree (fun x l r -> x + l + r) 0 t
```

The standard tree traversals can be written easily with a list accumulator. A little typographical manipulation shows the pleasing symmetry:

```
tree_preorder : \alpha tree }->\alpha\mathrm{ list
tree_inorder : \alpha tree }->\alpha\mathrm{ list
tree_postorder : \alpha tree }->\alpha\mathrm{ list
let tree_preorder t = fold_tree (fun x l r -> [x] @ l @ r) [] t
let tree_inorder t = fold_tree (fun x l r -> l @ [x] @ r) [] t
let tree_postorder t = fold_tree (fun x l r -> l @ r @ [x]) [] t
```

On our example list:

```
    tree_preorder (Br (1, Br (0, Lf, Lf), Br (6, Br (4, Lf, Lf), Lf)))
# [1; 0; 6; 4]
    tree_inorder (Br (1, Br (0, Lf, Lf), Br (6, Br (4, Lf, Lf), Lf)))
C [0; 1; 4; 6]
    tree_postorder (Br (1, Br (0, Lf, Lf), Br (6, Br (4, Lf, Lf), Lf)))
\Longrightarrow [0; 4; 6; 1]
```


Questions

1. Write a function which, given a list of integers representing expenses, removes them from a budget, again represented by an integer.
2. Calculate the length of a list using one of the fold_ functions.
3. Use one of the fold_ functions to find the last element of list, if any. Behave sensibly if the list is empty.
4. Write a function to reverse a list, using one of the fold_ functions.
5. Write a version of List. mem using one of the fold_ functions. Now setify can be defined entirely using folds.
6. Use a fold to write a function which, given a list of non-empty strings representing words, returns a single string where the words are separated by spaces. Comment on its efficiency.
7. Use fold_tree to write a function which calculates the maximum depth of a tree. What is its type?
8. Compare the time efficiency of one or more of your functions with the system implementation of the same function (for example, our fold-based member function vs. List.mem) with regard to both computational complexity and actual time taken.
9. Comment on whether the use of folds in each of Questions 1-7 is good style.

Chapter 2

Being Lazy

We can make our own data type for OCaml's built-in lists like this:

```
type 'a list = Nil | Cons of 'a * 'a list
```

The constructor Nil represents the empty list, and Cons builds a list from a head and a tail. So, for example, we can write the list $[1 ; 2 ; 3]$ as Cons (1, Cons (2, Cons (3, Nil))). It is also possible to define an infinitely-long list, where elements are only produced when we actually need them. This is known as a lazy list. Instead of a tail, we use a tail function. This is a function which, when given a unit value, yields the tail:

```
type 'a lazylist = Cons of 'a * (unit -> 'a lazylist)
```

Note that we have no Nil constructor, because the list has no end. Our use of unit rather than another type is a choice - we could use any type, but unit is the simplest type, containing only one value. How do we use such a creature? Let us start by writing a function which, given an integer n, builds the lazy list of all integers $n, n+1, n+2 \ldots$ and returns it:

```
lseq : int }->\mathrm{ int lazylist
let rec lseq n =
    Cons (n, fun () -> lseq (n + 1))
```

When we type this in to the OCaml top level, here is what we see:

```
OCaml
```

```
# lseq 0;;
- : int lazylist = Cons (0, <fun>)
```

We can see that the head of the list is zero - the rest is yet to be calculated. OCaml represents the tail function with <fun>. We can now write functions to extract items from the list. Here are lazy head and tail functions:

```
lhd : }\alpha\mathrm{ lazylist }->
ltl : }\alpha\mathrm{ lazylist }->\alpha\mathrm{ lazylist
let lhd (Cons (n, -)) = n
let ltl (Cons (_, tf)) = tf ()
```

Notice that, because there is only one constructor in our data type, we can pattern match directly in the function argument. When we apply the unit () to the tail function, we are forcing evaluation of the tail. Here are lazy versions of the familiar take and drop functions, which take or drop the first n elements of a list:

```
ltake : \alpha lazylist }->\mathrm{ int }->\alpha\mathrm{ list
ldrop : }\alpha\mathrm{ lazylist }->\mathrm{ int }->\alpha\mathrm{ lazylist
let rec ltake (Cons (h, tf)) n =
    match n with
        0 -> []
    | - -> h :: ltake (tf ()) (n - 1)
let rec ldrop (Cons (h, tf) as ll) n =
    match n with
        0 -> ll
    | - -> ldrop (tf ()) (n - 1)
```

The ltake function has to yield an ordinary list, of course. Note the use of the as keyword to name part of the pattern (here, Cons (h, tf) is named ll), making the base case of ldrop simpler. Now we can actually get at our elements:

OCaml

```
# ltake (lseq 0) 20;;
- : int list =
[0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19]
# ldrop (lseq 0) 20;;
- : int lazylist = Cons (20, <fun>)
```

Two favourite list functions have easy analogues in the lazy world:

```
lmap : (\alpha -> \beta) }->\alpha\mathrm{ lazylist }->\beta\mathrm{ lazylist
lfilter : ( }\alpha->\mathrm{ bool) }->\alpha\mathrm{ lazylist }->\alpha\mathrm{ lazylist
let rec lmap f (Cons (h, tf)) =
    Cons (f h, fun () -> lmap f (tf ()))
let rec lfilter f (Cons (h, tf)) =
    if f h then
        Cons (h, fun () -> lfilter f (tf ()))
    else
        lfilter f (tf ())
```

Note that delaying and forcing evaluation often come together, as in both these examples. The function map returns almost immediately - assuming f is quick. The computation of the rest of the elements is, as always, delayed. The filter function is different - it must find at least one matching element to use as the head, before returning. If it does not find one, it will never return, so care is needed. Let us use these two functions to find the cubes divisible by five:

```
cubes : int lazylist
let cubes =
    lfilter
        (fun x -> x mod 5 = 0)
        (lmap (fun x -> x * x * x) (lseq 1))
```

Now, using ltake:
OCaml
\# ltake cubes 20; ;

- : int list =
[125; 1000; 3375; 8000; 15625; 27000; 42875; 64000; 91125; 125000; 166375;
216000; 274625; 343000; 421875; 512000; 614125; 729000; 857375; 1000000]
Here is another example of a simple lazy list, this time the list of all primes, created by use of lfilter and recursion, beginning with the list of all numbers from 2 , calculated with 1 seq:

```
mkprimes : int lazylist }->\mathrm{ int lazylist
primes : int lazylist
let rec mkprimes (Cons (h, tf)) =
    Cons (h, fun () ->
        mkprimes (lfilter (fun x -> x mod h <> 0) (tf ())))
let primes = mkprimes (lseq 2)
```

There are plenty of list functions which cannot be adapted to lazy lists. We cannot, for example, reverse a lazy list, or append two lazy lists. But there is an analogue to append. We can combine two lists fairly, taking elements in turn from each:

```
interleave : \alpha lazylist }->\alpha\mathrm{ lazylist }->\alpha\mathrm{ lazylist
let rec interleave (Cons (h, tf)) l =
    Cons (h, fun () -> interleave l (tf ()))
```

For example, the list alternating between zeros and ones can be built with interleave and a function to build constant lists:

```
lconst : int }->\mathrm{ int lazylist
interleaved : int lazylist
let rec lconst n =
    Cons (n, fun () -> lconst n)
let interleaved =
    interleave (lconst 0) (lconst 1)
```

A more interesting example is to calculate the lazy list of all ordinary lists of zeros and ones. We can do this by prepending a zero and a one to the list, and interleaving the resulting lists:

```
allfrom : int list }->\mathrm{ int list lazylist
allones : int list lazylist
let rec allfrom l =
    Cons (l, fun () ->
        interleave (allfrom (0 :: l)) (allfrom (1 :: l)))
let allones = allfrom []
```

This yields:
OCaml

```
# ltake allones 20;;
- : int list list =
[[]; [0]; [1]; [0; 0]; [0; 1]; [1; 0]; [1; 1]; [0; 0; 0]; [0; 0; 1];
    [0; 1; 0]; [0; 1; 1]; [1; 0; 0]; [1; 0; 1]; [1; 1; 0]; [1; 1; 1];
    [0; 0; 0; 0]; [0; 0; 0; 1]; [0; 0; 1; 0]; [0; 0; 1; 1]; [0; 1; 0; 0]]
```

To see why, we can visualise the evaluation as a tree where each left branch prepends a zero and each right branch a one:

The interleavings are fair, and the interleavings of interleavings equally so, thus we see the results of length two in this order: $[0 ; 0][0 ; 1][1 ; 0][1 ; 1]$.

Questions

1. Write the lazy list whose elements are the numbers $1,2,4,8,16 \ldots$ What is its type?
2. Write a function to return the nth element of a lazy list where element zero is the head of the list.
3. Write a function which, given a list, returns the lazy list forming a repeated sequence taken from that list. For example, given the list [1; 2; 3] it should return a lazy list with elements $1,2,3,1,2,3,1,2 \ldots$
4. Write a lazy list whose elements are the fibonacci numbers $0,1,1,2,3,5,8 \ldots$ whose first two elements are zero and one by definition, and each ensuing element is the sum of the previous two.
5. Write the function unleave which, given a lazy list, returns two lazy lists, one containing elements at positions $0,2,4,6 \ldots$ of the original list, and the other containing elements at positions $1,3,5,7 \ldots$
6. Alphanumeric labels in documents go $A, B, C, \ldots, X, Y, Z, A A, A B, \ldots, B A, B B, \ldots A A A, \ldots$ Write the lazy list containing strings representing this sequence.

Chapter 3

Named Tuples with Records

Tuples can be used to combine a fixed number of elements of same or differing types. However, once we have more than two or three items, remembering the order can be difficult, especially if the types of the items are the same. Records remedy this, allowing us to name each item. Due to this naming, they have several other useful properties which distinguish them from tuples. Let us define a simple type for cartesian coordinates in two dimensions:

```
type point = {x : float; y : float}
```

Records are like tuples with labels. We write them between braces \{ \}. Each element of the record (called a field) has a name and a type, and the fields are separated with semicolons. We can construct a value of this type using the same syntax, but with the equals sign in place of the colons:

```
let p = {x = 4.5; y = 6.0}
```

We can add another field to the record, a label for the point:

```
type point = {x : float; y : float; label : string}
```

We can parametrize it just like a list or variant data type:

```
type 'a point =
    {x : float;
    y : float;
    label : string;
    content : 'a}
```

So now we can have values of type int point and string point and so on. We can define one directly:

```
p : int list point
make_point : float }->\mathrm{ float }->\mathrm{ string }->\alpha->\alpha\mathrm{ point
let p =
    {x = 4.5;
        y = 6.0;
        label = "P";
        content = [1; 3; 1]}
let make_point x y l c =
    {x = x; y = y; label = l; content = c}
```

Notice that frequently we write something like $\mathrm{x}=\mathrm{x}$ in a record definition, as in make_point here. This can be shortened to just x, and by doing so for all the arguments in make_point we obtain this simpler definition:

```
make_point : float }->\mathrm{ float }->\mathrm{ string }->\alpha->\alpha\mathrm{ point
let make_point x y label content =
    {x; y; label; content}
```

Having built record values, we now need to know how to extract the individual parts. We can use the dot notation, writing record.field like so:

```
string_of_point : \alpha point }->\mathrm{ string
let string_of_point p =
    p.label
    ^ " = ("
    ^ string_of_float p.x
    ^ ", "
    ^ string_of_float p.y
    ^ ")"
```

Alternatively, we can use record syntax in patterns, here in the argument itself:

```
string_of_point : \alpha point }->\mathrm{ string
let string_of_point {label = l; x = x; y = y} =
    l
    ^ " = ("
    ^ string_of_float x
    ^ ", "
    ^ string_of_float y
    ^ ")"
```

Notice we only had to include in the pattern the parts of the record we intended to use. This can, optionally, be made more explicit by adding the wildcard _ to the pattern:

```
string_of_point : \alpha point }->\mathrm{ string
let string_of_point {label = l; x = x; y = y; _} =
    l
    ^ " = ("
    ^ string_of_float x
    ^","
    ^ string_of_float y
    ^ ")"
```

Finally, we can use the shorthand record form in patterns too:

```
string_of_point : \alpha point }->\mathrm{ string
let string_of_point {label; x; y; _} =
    label
    ^ " = ("
    ^ string_of_float x
    ^ ", "
    ^ string_of_float y
    ^ ")"
```

Where we need a copy of a record with just one or more fields changed, we can use the with keyword:

```
relabel : \alpha point }->\mathrm{ string }->\alpha\mathrm{ point
let relabel p l = {p with label = l}
```

Again, the shortened form can help:

```
relabel : \alpha point }->\mathrm{ string }->\alpha\mathrm{ point
let relabel p label = {p with label}
```

Here is a function to reflect a point about the line $x=y$:

```
mirror : \alpha point }->\alpha\mathrm{ point
let mirror p = {p with x = p.y; y = p.x}
```


Mutable records

Individual fields of a record can be made mutable (their value may be changed - literally mutated), by use of the mutable keyword:

```
type 'a point =
    {x : float;
    y : float;
    label : string;
    mutable content : 'a}
```

In fact, OCaml's reference type is just a record with a single, mutable field:
OCaml

```
# let x = ref 0;;
- : int ref = { contents = 0 }
```

Here, the type ref is defined by type 'a ref = \{mutable contents : 'a\} and the constructor function ref is of type $\alpha \rightarrow \alpha$ ref. The value of a mutable field can be updated using the $<-$ symbol like this:

OCaml

```
# type 'a point = {x : float; y : float; label : string; mutable content : 'a};;
type 'a point = {
    x : float;
    y : float;
    label : string;
    mutable content : 'a;
}
# let p = {x = 4.5; y = 6.0; label = "P"; content = [1; 3; 1]};;
val p : int list point = {x = 4.5; y = 6.; label = "P"; content = [1; 3; 1]}
# p.content <- [1];;
- : unit = ()
# p;;
- : int list point = {x = 4.5; y = 6.; label = "P"; content = [1]}
```

Such records should be used with care, like any mutable feature, especially if they are likely to be used as part of a larger data structure.

Questions

1. Show how to update a reference without using the := operator.
2. Using functions from the "Time Functions" section of the documentation to the Unix module, write a program which, when run, returns a string containing the time and date, for example "It is 2:45 on Wednesday 8 January 2014".
3. What is the difference between type $t=\{x$: int ref $\}$ and type $t=\{$ mutable x : int $\}$? What are the advantages and disadvantages of each?
4. Define a record of six items $a \ldots f$ where a and b have the same type as one another, c and d have the same type as one another and e and f have the same type as one another.
5. Records are used in the module Gc which controls OCaml's garbage collector (a garbage collector is a system which automatically reclaims space the program has finished with as the program is running). Use the data structures and functions in the Gc module to write programs which:
(a) write a summary of the state of the garbage collector to a text file; and
(b) alter the verbosity of the garbage collector as defined in the control record.

Chapter 4

Generalized Input/Output

In Pervasives, OCaml's default always-opened module, a number of functions are defined over input and output channels - representing both files in the file system and special ones such as standard output. However, it is often useful to have a more general abstraction of input and output over, for example, strings and arrays, as well as files and channels.

In this chapter, we shall develop such an abstraction, giving input and output types which work with OCaml channels and strings. It can be extended to work over other data structures, and to have more complete functionality - some of the questions at the end of the chapter involve such extensions.

A type for inputs

The fundamental operations on an input, once it has been created, will be:

- finding the current position;
- setting the current position;
- reading a character, at the same time advancing the position;
- finding the length of an input.

We need a way to group them together, and to refer to them easily. A record is ideal:

```
type input =
    {pos_in : unit -> int;
        seek_in : int -> unit;
        input_char : unit -> char;
        in_channel_length : int}
```

Now we can build an input from an OCaml in_channel easily (we have re-used some of the standard OCaml names):

```
input_of_channel : in_channel }->\mathrm{ input
let input_of_channel ch =
    {pos_in = (fun () -> pos_in ch);
        seek_in = seek_in ch;
    input_char = (fun () -> input_char ch);
    in_channel_length = in_channel_length ch}
```

Notice that the original channel is now hidden inside the input - the functions pos_in and input_char instead simply take the unit () as their input. Let us assure ourselves that this structure also works for abstracting over strings:

```
input_of_string : string }->\mathrm{ input
let input_of_string s =
    let pos = ref 0 in
        {pos_in = (fun () -> !pos);
        seek_in =
            (fun p ->
                if p< 0 then
                    raise (Invalid_argument "seek before beginning");
                pos := p);
        input_char =
            (fun () ->
                if !pos > String.length s - 1
                    then raise End_of_file
                        else (let c = s.[!pos] in pos := !pos + 1; c));
        in_channel_length = String.length s}
```

We allocate a local reference, pos, to hold the current position. It cannot be accessed directly, only manipulated through the exposed record of functions. The pos_in and in_channel_length functions are simple. The seek_in function needs to check that the position is positive, but we allow it to be beyond the end, for compatibility with OCaml channels. The input_char function checks it is not trying to read beyond the end of the string, then reads a character, advances the position, and returns the character.

Notice we use the same exception scheme as OCaml does in its own channels - raising End_of_file if a read is attempted beyond the last character.

Example: reading words

We should like to write a program which can extract the words from a given input, such as a string or a file. For example, given the string
"There were four of them; more than before."
we wish to produce

```
["there"; "were"; "four"; "of"; "them"; "more"; "than"; "before"]
```

removing spaces, punctuation and making the words lower case. First, let us define a function to rewind the input by one character (useful when we have read a character and decided we do not wish to consume it), and another, a predicate to determine if a character is considered a non-letter, and thus may be skipped:

```
rewind : input }->\mathrm{ unit
is_non_letter : char }->\mathrm{ bool
let rewind i =
    i.seek_in (i.pos_in () - 1)
let is_non_letter x =
    match x with
    ' ' | '!' | '(' | ')' | '.' | ',' | ';' | ':' -> true
    | _ -> false
```

Now, we can write a function skip_characters to skip any punctuation from the current point. It may raise End_of_file, of course. Then, we have the function collect_characters which, given a fresh Buffer.t and an input which has been processed by skip_characters, returns the string containing the next sequence of interesting characters, or raises End_of_file if we are at the end of the input.

```
skip_characters : input }->\mathrm{ unit
collect_characters : input }->\mathrm{ string
let rec skip_characters i =
    if is_non_letter (i.input_char ())
        then skip_characters i
        else rewind i
let rec collect_characters b i =
    match
        try Some (i.input_char ()) with End_of_file -> None
    with
        None -> Buffer.contents b
        Some c ->
            if is_non_letter c
                then Buffer.contents b
                else (Buffer.add_char b c; collect_characters b i)
```

Finally, we can write read_word which finds the next word, if there is one. Then read_words collects them all in a list, and turns them in to lower case using the Standard Library function String. lowercase. These functions form Figure 4.1. For example:

```
# read_words (input_of_string "There were four of them; more than before.");;
- : string list = ["there"; "were"; "four"; "of"; "them"; "more"; "than"; "before"]
```

```
read_word : input }->\mathrm{ string option
read_words_inner : input }->\mathrm{ string list }->\mathrm{ string list
read_words : input }->\mathrm{ string list
let read_word i =
    try
        skip_characters i;
        Some (collect_characters (Buffer.create 20) i)
    with
        End_of_file -> None
let rec read_words_inner i a =
    match read_word i with
        None -> List.rev (List.map String.lowercase a)
    | Some w -> read_words_inner i (w :: a)
let read_words i =
    read_words_inner i []
```

Figure 4.1

A type for outputs

What do we need for a generic output? We must have an output_char function to write a single character, at least. It is also useful to have an out_channel_length function so we know how many characters have been written. We will not allow seeking back and forth like with our input type for the sake of simplicity. Figure 4.2 shows the output type, and functions to build outputs from channels and strings.

Note that whilst we have unified the interface for writing to strings and channels, they remain different things: the string has limited length, and if the length is not all used it will contain junk at the end. Let us use these functions to build a function which writes a list of integers to any output:

```
output_int_list : output }->\mathrm{ int list }->\mathrm{ unit
let output_int_list o ls =
    o.output_char '[';
    List.iter
        (fun n ->
            String.iter o.output_char (string_of_int n);
            o.output_char ';';
            o.output_char ' ')
        ls;
    o.output_char ']'
```

Note that o. output_char has an appropriate type for use with standard functions such as String.iter. We can test with an output built from standard output:

```
output_of_channel : out_channel }->\mathrm{ output
output_of_string : string }->\mathrm{ output
type output =
    {output_char : char -> unit;
        out_channel_length : unit -> int}
let output_of_channel ch =
    {output_char = (fun c -> output_byte ch (int_of_char c));
        out_channel_length = (fun () -> out_channel_length ch)}
let output_of_string s =
    let pos = ref 0 in
        {output_char =
            (fun c ->
                if !pos < String.length s
                    then (s.[!pos] <- c; pos := !pos + 1)
                    else raise End_of_file);
            out_channel_length =
            (fun () -> String.length s)}
```

Figure 4.2

```
# output_int_list (output_of_channel stdout) [1; 2; 3; 4; 5];;
[1; 2; 3; 4; 5 ]
- : unit = ()
```

Can you find a way to suppress the extraneous space before the] character?

Questions

1. Write a function to build an input from an array of characters.
2. Write a function input_string of type input \rightarrow int \rightarrow string which returns the given number of characters from the input as a string, or fewer if the input has ended.
3. Extend the input type to include a function input_char_opt which returns a value of type char option, with None signalling end of file. Extend the functions input_of_channel and input_of string appropriately.
4. Extend the input type with a function input_byte which returns an integer representing the next byte, or the special value -1 at end of file. Comment on the usefulness of this compared with input_char_opt and input_char.
5. Write an input type which raises End_of_file if it reaches a new line (a ' $\backslash n$ ' character). Use this to build a program which reads a line from standard input.
6. Write a function to build an output from a Buffer.t. Show how this can be used to retrieve a final string after output is finished.

Chapter 5

Streams of Bits

We have dealt with byte-by-byte streams of information. Often, though, we need to consider data as a stream of bits. Can we build a nice abstraction for this?

We could start with a function which builds a list of bits from a byte, and use that for each byte in the stream, building a final list. This has two disadvantages: it is inefficient in space and time (there are eight times as many bits as bytes, of course), and it processes all the bytes at once, rather than as required. Instead, let us build a bit stream based on our input type:

```
type input_bits =
    {input : input;
        mutable byte : int;
        mutable bit : int}
```

The input field is the input this bit stream is based upon. It will start from the most significant bit of the current byte of that input. The byte field holds the byte just read from the input, or an undefined value if no byte has yet been read. The bit field records the current bit position, but instead of $0 . .7$ we will use $128,64,32,16,8,4,2,1$ so this field can be used directly to extract the bit using the built-in logical AND operator land, and then halved:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
0	1	1	1	0	1	1	0	1	1	1	0	0	0	1	1	0	1	1	0	0	1	1	0	0	0	0
0b01110110								0b11100011								0b01100110								0b000...		
128	64	32	16	8	4	2	1	128	64	32	16	8	4	2	1	128	64	32	16	8	4	2	1	128	64	32
F	T	T	T	F	T	T	F	T	T	T	F	F	F	T	T	F	T	T	F	F	T	T	F	F	F	F

input data
value of byte
value of bits
byte land bits > 0

The expression x land y where x and y are integers yields an integer whose value has a bit pattern which is the bitwise logical AND of x and y. This input_bits type can be wholly abstracted, defined in the . mli by just type input_bits. Now, we can define a function to build an input_bits from an input:

```
input_bits_of_input : input }->\mathrm{ input_bits
let input_bits_of_input i =
    {input = i;
    byte = 0;
    bit = 0}
```

The function to get the next bit is simple. If bit is zero, we must load a new byte from the input and return the next bit. If bit is non-zero, we extract the given bit, and halve bit ready for next time.

```
getbit : input_bits }->\mathrm{ bool
let rec getbit b =
    if b.bit = 0 then
        begin
            b.byte <- int_of_char (b.input.input_char ());
            b.bit <- 128;
            getbit b
        end
    else
        let r = b.byte land b.bit > 0 in
            b.bit <- b.bit / 2;
            r
```

This function can raise End_of_file, of course, if the underlying call to input_char raises it. Two other functions are useful. We can align the bit stream on the next byte boundary trivially:

```
align : input_bits }->\mathrm{ unit
let align b =
    b.bit <- 0
```

We can write a function getval to return a given number of bits considered as an integer, allowing us to read a data field of any width. We use the lor operator, which gives the bitwise logical OR of two integers, and the lsl or logical shift left operator, which shifts the bits in an integer left by the specified number of bits, filling zeros on the right.

```
getval : input_bits }->\mathrm{ int }->\mathrm{ int
let getval b n =
    if n <= 0 || n > 31 then
        raise (Invalid_argument "getval")
    else
        let r = ref 0 in
            for x = n - 1 downto 0 do
                r := !r lor ((if getbit b then 1 else 0) lsl x)
            done;
            ! r
```

OCaml integers are at least 31 bits (depending upon the computer), so we can read fields up to 31 bits wide with this function. This number on a particular computer can be calculated by evaluating Sys.word_size - 1.

Example: decoding a TCP datagram header

Here is the layout of the header of a datagram of the TCP (Transmission Control Protocol) used for network communications:

It contains fields as small as 1 bit, and as large as 32 bits. We shall use the following 20 byte TCP datagram header as an example: 0026 bb 1462 b7 cc 335855 le ed 080045000378 f 7 ac.

The code in Figure 5.1, to print out pertinent information from the header, uses getbit, getval, and a yet-to-be-defined function getval_32 to read the header of a TCP datagram and print a summary. The function getval_32 returns up to 32 bits in an Int32.t (implementing getval_32 is one of the questions at the end of the chapter). Here is the output for our example data:

```
Source port = 38
Destination = 47892
Sequence = 1656212531
Acknowledgement Number = 1481973485
Flags:
    Urgent = false
    Ack = false
    Push = false
    Reset = false
    Syn = false
    Fin = false
```

```
print_header : string }->\mathrm{ unit
let print_header filename =
    let ch = open_in_bin filename in
    let i = input_of_channel ch in
    let b = input_bits_of_input i in
        let src_port = getval b 16 in
        let dest_port = getval b 16 in
        let seq_number = getval_32 b 32 in
        let ack_number = getval_32 b 32 in
        let _ = getval b 4 in data offset
        let _ = getval b 6 in reserved
        let urgent = getbit b in
        let ack = getbit b in
        let push = getbit b in
        let reset = getbit b in
        let syn = getbit b in
        let fin = getbit b in
        let receive = getval b 16 in
        let checksum = getval b 16 in
        let urgent_pointer = getval b 16 in
            print_string "Source port = ";
        print_int src_port;
        print_string "\nDestination = ";
        print_int dest_port;
        print_string "\nSequence =";
        print_string (Int32.to_string seq_number);
        print_string "\nAcknowledgement Number = ";
        print_string (Int32.to_string ack_number);
        let print_bool b = print_string (string_of_bool b) in
            print_string "\nFlags:\n Urgent = "; print_bool urgent;
            print_string "\nAck = "; print_bool ack;
            print_string "\nPush = "; print_bool push;
            print_string "\nReset = "; print_bool reset;
            print_string "\nSyn = "; print_bool syn;
            print_string "\nFin = "; print_bool fin;
            print_string "Receive window size = ";
            print_int receive;
            print_string "\nChecksum = ";
            print_int checksum;
            print_string "\nUrgent pointer = ";
            print_int urgent_pointer;
            print_string "\n";
            close_in ch
```

Figure 5.1

Receive window size = 17664
Checksum = 888
Urgent pointer = 63404

Note we must use open_in_bin for binary data files in case the program is executed on Microsoft Windows, where text and binary files are considered different and read differently.

Output bit streams

The type for output bit streams is rather similar to that for input bit streams, but it must be used rather differently.

```
type output_bits =
    {output : output;
    mutable obyte : int;
    mutable obit : int}
```

Here, output is the underlying output. The current output byte which is being constructed bit-by-bit is obyte, and a number obit from 7 down to 0 to represent the current shift required to add a bit to the byte in the correct place. When it is time to move on to the next byte, obit is -1 . We can build a fresh output_bits from an output:

```
output_bits_of_output : output }->\mathrm{ output_bits
let output_bits_of_output o =
    {output = o;
        obyte = 0;
        obit = 7}
```

The whole byte cannot be written to the underlying output until it has been completed, so we must have a flush function to be used when output is finished:

```
flush : output_bits }->\mathrm{ unit
let flush o =
    if o.obit < 7 then o.output.output_char (char_of_int o.obyte);
    o.obyte <- 0;
    o.obit <- }
```

This doubles as our alignment function. We can now write putbit. For reasons we shall explain, it considers any non-zero input to be a 1 bit.

```
putbit : output_bits }->\mathrm{ int }->\mathrm{ unit
let putbit o b =
    if o.obit = (-1) then
        begin
            flush o;
            putbit o b
        end
    else
        begin
            if b <> 1 then o.obyte <- o.obyte lor (1 lsl o.obit);
            o.obit <- o.obit - 1
        end
```

To output a value of width up to 31 , we can write a function putval $0 \vee l$ which, given an output_bits, value, and length in bits, calls putbit on each bit in turn:

```
putval : output_bits }->\mathrm{ int }->\mathrm{ int }->\mathrm{ unit
let putval o v l =
    for x = l - 1 downto 0 do
        putbit o (v land (1 lsl x))
    done
```

Now we can see why we allowed any non-zero integer to be considered a 1 bit - it avoids a test in putval. Now we have everything we need.

We can rebuild the datagram we took apart earlier using putbit, putval, and the yet-to-be-defined putval_32 as shown in Figure 5.2. In the questions, you are asked to implement various specializations of some of our input and output functions on bit streams.

```
output_header : string }->\mathrm{ unit
let output_header filename =
    let ch = open_out_bin filename in
    let o = output_of_channel ch in
    let bits = output_bits_of_output o in
        putval bits 38 16;
        putval bits 47892 16;
        putval_32 bits 1656212531l 32;
        putval_32 bits 1481973485l 32;
        putval bits 5 4;
        putval bits 0 6;
        putbit bits 0;
        putval bits 17664 16;
        putval bits 888 16;
        putval bits 63404 16;
        flush bits;
        close_out ch
```

Figure 5.2

Questions

1. Specialize the function getval so that writing 8 bits at a time when the input is aligned is optimized. Benchmark this function against the naive one.
2. Write the function getval_32 which can get a value of type Int32.t in the same fashion as getval.
3. Specialize the function putval so that writing 8 bits at a time when the output is aligned is optimized. Benchmark this function against the naive one.
4. Write the function putval_32 which can put a value of type Int32.t in the same fashion as putval.
5. We said that the output_bits type needed a flush operation. In fact, this is not always true - for outputs built with, for example, output_of_string, we could write the current byte every time a bit is written, seeking back one byte each time, only moving on when the byte is actually finished. Implement this.

Chapter 6

Compressing Data

Often we need to attempt to reduce the amount of space taken by some data, for storage or transmission. If data were arbitrary, it could not be compressed - to compress data we need to recognise and exploit patterns. However, most data is not arbitrary at all, but structured and containing repeated patterns. No compression scheme can guarantee to reduce the size of all inputs, but we would like to achieve good compression on typical data.

We will look at a simple byte-by-byte compression scheme, implementing it using our input and output data types so it can be applied to different kinds of inputs and outputs. Then, we will consider a more complex but efficient scheme for compressing data on a bit-by-bit basis.

A byte-by-byte compression scheme

The following extract from ISO-32000 (the PDF standard) defines a byte-by-byte compression scheme:

The encoded data shall be a sequence of runs, where each run shall consist of a length byte followed by 1 to 128 bytes of data. If the length byte is in the range 0 to 127 , the following length +1 (1 to 128) bytes shall be copied literally during decompression. If the length is in the range 129 to 255 , the following single byte shall be copied 257 - length (2 to 128) times during decompression. A length value of 128 shall denote EOD [end of data].

For example, consider the text " ($(5.000000,4.583333),(4.500000,5.000000))$ ", which can be represented in ASCII as the list of integers [40; 40; 53; 46; 48; 48; 48; 48; 48; 48; 44; 32; 52; 46; 53 ; $56 ; 51 ; 51 ; 51 ; 51 ; 41 ; 44 ; 32 ; 40 ; 52 ; 46 ; 53 ; 48 ; 48 ; 48 ; 48 ; 48 ; 44 ; 53 ; 46 ; 48 ; 48 ; 48 ;$
48; 48; 48; 41; 41] of length 43. This will be compressed as shown in Figure 6.1. That is to say, as [255; $40 ; 1 ; 53 ; 46 ; 251 ; 48 ; 5 ; 44 ; 32 ; 52 ; 46 ; 53 ; 56 ; 253 ; 51 ; 6 ; 41 ; 44 ; 32 ; 40 ; 52 ; 46 ; 53 ;$
$252 ; 48 ; 2 ; 44 ; 53 ; 46 ; 251 ; 48 ; 255 ; 41 ; 128]$, of length 35 . The maximum compression ratio achieved with this method (for long constant data) is 64:1. The worst case (alternating bytes) is 127:128 - a slight expansion.

Let us begin with two utility functions to allow us to convert between strings and lists of integers this will make it easier to understand our examples when we evaluate them in OCaml's top level:

Input data	Type of run	Length	Output header	Output data
4040	same	2	$257-2=255$	40
5346	different	2	$2-1=1$	5346
484848484848	same	6	$257-6=251$	48
443252465356	different	6	$6-1=5$	443252465356
51515151	same	4	$257-4=253$	51
41443240524653	different	7	$7-1=6$	41443240524653
4848484848	same	5	$257-5=252$	48
445346	different	3	$3-1=2$	445346
484848484848	same	6	$257-6=251$	48
4141	same	2	$257-2=255$	41
-	EOD	-	-	128

Figure 6.1

```
string_of_int_list : int list }->\mathrm{ string
int_list_of_string : string }->\mathrm{ int list
let string_of_int_list l =
    let s = String.create (List.length l) in
        List.iteri (fun n x -> s.[n] <- char_of_int x) l;
        s
let int_list_of_string s =
    let l = ref [] in
        for x = String.length s - 1 downto 0 do
            l := int_of_char s.[x] :: !l
        done;
        !l
```

Note the use of the Standard Library function List.iteri which is like List.iter, but it passes an additional integer to the function each time, representing the position in the list, starting at 0 . Note also that we use downto in int_list_of_string to avoid a list reversal.

Now, we shall build a little abstraction to allow our compression and decompression functions to share a common basis. Our compress and decompress function will need to read from any input, and write to any output. However, for our little tests, we shall be reading from and writing to strings. Since we do not know the size of the compressed or decompressed output in advance, we cannot allocate an appropriately sized string. So, let us build an output from a Buffer.t. This way, we can write a function process which, given a compression or decompression function, creates a buffer, builds an output from it, calls the function to process the data, and then extracts the final string from the buffer.

```
output_of_buffer : Buffer.t }->\mathrm{ output
process : (input }->\mathrm{ output }->\mathrm{ unit) }->\mathrm{ string }->\mathrm{ string
let output_of_buffer b =
    {output_char = Buffer.add_char b;
        out_channel_length = fun () -> Buffer.length b}
let process f s =
    let b = Buffer.create (String.length s) in
        f (input_of_string s) (output_of_buffer b);
        Buffer.contents b
```

Now, given some suitable function decompress, say, we can call process giving the function and a string, and get a new string back.

Decompression in this scheme, as is often the case, is simpler than compression, so we shall address it first. The whole thing is wrapped in a loop which terminates only upon an exception. If the input data is well-formed, that exception will be EOD, which we have defined for this purpose. Inside the loop, we read a byte from the input. It is either in the range $0 \ldots 127$, in which case it is a "different" run, and we copy some bytes from input to output. Or, it is in the range $129 \ldots 255$, in which case it is a "same" run, and we output a number of copies of the next byte. Otherwise, the byte must have value 128, and we raise the EOD exception. The decompress_string function is as simple as we claimed it would be, because we wrote process.

```
decompress : input }->\mathrm{ output }->\mathrm{ unit
decompress_string : string }->\mathrm{ string
exception EOD
let decompress i o =
    try
        while true do
            match int_of_char (i.input_char ()) with
                x when x >= 0 && x <= 127 ->
                    for p = 1 to x + 1 do o.output_char (i.input_char ()) done
            | x when x > 128 && x <= 255 ->
                    let c = i.input_char () in
                        for p = 1 to 257 - x do o.output_char c done
            | _ -> raise EOD
        done
    with
        EOD -> ()
let decompress_string = process decompress
```

For compression, we will first write functions to recognise a "same" run and a "different" run in the input, and then a main function which uses them as appropriate. The function get_same returns the first character, and an integer representing the number (one or more) of "same" characters starting with the first one. It leaves the input pointing at the last "same" character. If 128 same characters have been found,
we must stop early. If we are at the end of input when the function is called, End_of_file is raised as usual.

```
get_same : input }->\mathrm{ char }\times\mathrm{ int
let get_same i =
    let rec getcount ch c =
        if c = 128 then 128 else
            try
            if i.input_char () = ch
                then getcount ch (c + 1)
                else (rewind i; c)
            with
                End_of_file -> c
    in
        let ch = i.input_char () in (ch, getcount ch 1)
```

The get_different function is rather more awkward. It will return the non-empty list of "different" characters starting at the current position. We must stop as soon as we notice two like characters, rewinding twice and removing a character from our accumulator. So, for example, if we are reading "An Accumulation" we want to return ['A' ; 'n'; ' '; 'A'] but we do not know this until we read the second ' c '. Again, we must stop after 128 differing characters. As before, End_of_file is raised if we are at the end of the input on the initial call.

```
get_different : input }->\mathrm{ char list
let get_different i =
    let rec getdiffinner a c =
        if c = 128 then List.rev a else
            try
            let ch' = i.input_char () in
                if ch' <> List.hd a
                        then getdiffinner (ch' :: a) (c + 1)
                        else (rewind i; rewind i; List.rev (List.tl a))
            with
            End_of_file -> List.rev a
    in
        getdiffinner [i.input_char ()] 1
```

The compression function is now relatively simple. We repeatedly call get_same. If it indicates a run of length one, we call get_different instead. In each case we write appropriate data. Then, on End_of_file, we write the EOD marker. The compress_string function is built just like decompress_string.

```
compress : input }->\mathrm{ output }->\mathrm{ unit
let compress i o =
    try
        while true do
            match get_same i with
                    (_, 1) ->
                rewind i;
                let cs = get_different i in
                        o.output_char (char_of_int (List.length cs - 1));
                        List.iter o.output_char cs
            | (b, c) ->
                o.output_char (char_of_int (257 - c));
                o.output_char b
        done
    with
        End_of_file -> o.output_char (char_of_int 128)
let compress_string = process compress
```

Let us try with our sample data:

```
    OCaml
# open Examples;;
# example;;
- : string = "((5.000000, 4.583333), (4.500000,5.000000))"
# int_list_of_string example;;
- : int list =
[40; 40; 53; 46; 48; 48; 48; 48; 48; 48; 44; 32; 52; 46; 53; 56; 51; 51; 51;
    51; 41; 44; 32; 40; 52; 46; 53; 48; 48; 48; 48; 48; 44; 53; 46; 48; 48; 48;
    48; 48; 48; 41; 41]
# let smaller = compress_string example;;
val smaller : string = "?(\0015.?0\005, 4.58?3\006), (4.5?0\002,5.?0?)\128"
# int_list_of_string smaller;;
- : int list =
[255; 40; 1; 53; 46; 251; 48; 5; 44; 32; 52; 46; 53; 56; 253; 51; 6; 41; 44;
    32; 40; 52; 46; 53; 252; 48; 2; 44; 53; 46; 251; 48; 255; 41; 128]
# decompress_string (compress_string example) = example;;
- : bool = true
```


A bit-by-bit compression scheme

Our previous method required whole bytes to be equal to one another to compress well. Now we consider compression bit-by-bit, but on the same principle - encoding the lengths of runs of data. We will build a
compressor and decompressor for the CCITT Group 3 compression scheme. This is the basic scheme used by the fax machines since the 1970s, and for 1 bit-per-pixel TIFF files. It is also used in the PDF format, as we shall see later in the book. Here is our example data, an 80×21, one-bit-per-pixel image of a scanned word from printed paper:

OCaml

We can put it into our source file using the characters 0 and 1 to ease readability. A string can run over several lines if a backslash is added at the end of each line. Spaces at the beginning of the next line are also skipped, so we can line it up nicely:

Abstract

let input_data = " $00 \backslash$ $0001000000 \backslash$ $00000000111111110000000000011111111100000000000000000000000000000000000111100000 \backslash$ $00000011000000011100000001110000001110000000000000000000000000000000000011000000 \backslash$ $00000110000000001110000011000000000110000000000000000000000000000000000011000000 \backslash$ $000011100000000001110001110011000000 \backslash$ $000011000000000001110001100011000000 \backslash$ $00001100000000000011001110000000000000000011100000000100111000011100000011000000 \backslash$ $00011100000000000011001110000000000000001111111000111111111101111110000001000000 \backslash$ $00011100000000000011101100000000000000001000011000001110001111000111000001000000 \backslash$ $00011100000000000011101100000000000000000000011000001100000110000011000001000000 \backslash$ $00011100000000000011001110000000000000000000011000001100000110000011000001000000 \backslash$ $00001100000000000011001110000000000000000111011000001100000110000011000001000000 \backslash$ $00001110000000000011000110000000000000011100011000001100000110000011000001000000 \backslash$ $00001110000000000110000111000000000000011000011000001100000110000011000011000000 \backslash$ $00000111000000000110000011100000000000011000011000001100000110000011000011100000 \backslash$ $00000011100000001100000001110000000010010001110000011000001100000110000111000000 \backslash$ $00000011111111100000000001111111111000111110111000111100011110000111001111100000 \backslash$ $00000000011100000000000000001111000000001000000000000000000000000000000000000000 \backslash$ 00\} 00"

You can see that it consists of runs of 0 (white) and 1 (black) pixels, 80 to each line, with 21 lines.

Preliminaries

First, we had better define a function to convert the string of zeros and ones to a string containing the actual binary data. We can do this by building an output_bits with an output built from a buffer. Then, after flushing, we can use Buffer. contents to extract the data we have written.

```
packedstring_of_string : string }->\mathrm{ string
let packedstring_of_string s =
    let b = Buffer.create (String.length s / 8 + 1) in
    let o = output_bits_of_output (output_of_buffer b) in
        for x = 0 to String.length s - 1 do putbit o (s.[x] = '1') done;
        flush o;
        Buffer.contents b
```

Note that, since the string will always be a whole number of bytes (possibly padded with zeros by flush) we must remember the width and height of our image (80 and 21 here) and pass one or both of them to some of our other functions. For example, we can write a function to print one of these packed binary strings. This needs the width of the image to know when to print newlines:

```
print_packedstring : int }->\mathrm{ string }->\mathrm{ unit
let print_packedstring w s =
    let ibits = input_bits_of_input (input_of_string s) in
        try
            while true do
                for column = 1 to w do print_int (getbitint ibits) done;
                print_newline ()
            done
        with
            End_of_file -> ()
```

For simplicity here, we do not worry about padding at the end (in our example, since the width is 80 , it will consist of whole bytes anyway).

Fax compression explained

We have said that the compression will proceed by encoding the lengths of the runs of zeros and ones in our data. How do we encode them? We need a set of binary sequences which can be distinguished from one another (i.e. no sequence can be a prefix of another sequence). In the case of fax compression, there are codes for run lengths 0 to 63, and different codes for white and black runs, as shown in Figure 6.2. Shorter codes are chosen for the more common cases, based on a statistical analysis of real documents.
Notice that no white symbol is a prefix of another white symbol, and no black symbol is a prefix of another black symbol. These codes for runs from 0 to 63 are called terminating codes. When a run is longer, we use one "make-up code", shown in Figure 6.3, followed by a terminating code. Thus, the longest run is of length $1728+63=1791$.

The reason for distinguishing between white and black codes is to do with error correction in unreliable transport mechanisms (such as phone lines that fax machines operate over) - otherwise we could just have one set of codes and assume runs alternate. The reason for the existence of a zero-length run is that each line is defined to begin with a white run. If it is really black, a zero-length white run is output first. No run is longer than a line. As an example, let us compress the first three lines of our example data:

Run	White	Black	Run	White	Black	Run	White	Black
0	00110101	0000110111	22	00000011	00000110111	44	00101101	000001010100
1	0000111	010	23	0000100	00000101000	45	00000100	000001010101
2	0111	11	24	0101000	00000010111	46	00000101	000001010110
3	1000	10	25	0101011	00000011000	47	00001010	000001010111
4	1011	011	26	0010011	000011001010	48	0000101	00001100100
5	1100	0011	27	0100100	000011001011	49	01010010	000001100101
6	1110	0010	28	0011000	000011001100	50	01010011	000001010010
7	1111	00011	29	00000010	000011001101	51	01010100	000001010011
8	1011	000101	30	00000011	000001101000	52	01010101	000000100100
9	10100	000100	31	00011010	000001101001	53	00100100	000000110111
10	00111	0000100	32	00011011	000001101010	54	00100101	000000111000
11	01000	0000101	33	00010010	000001101011	55	01011000	000000100111
12	001000	0000111	34	00010011	000011010010	56	01011001	000000101000
13	000011	00000100	35	00010100	000011010011	57	01011010	000001011000
14	110100	00000111	36	00010101	000011010100	58	01011011	000001011001
15	110101	000011000	37	00010110	000011010101	59	01001010	000000101011
16	101010	0000010111	38	00010111	000011010110	60	00110010	000000101100
17	101011	0000011000	39	00101000	000011010111	61	00110010	000001011010
18	0100111	0000001000	40	00101001	000001101100	62	00110011	000001100110
19	0001100	00001100111	41	00101010	000001101101	63	00110100	000001100111
20	0001000	00001101000	42	00101011	000011011010		(make up codes required	
21	0010111	00001101100	43	00101100	000011011011		for longer runs)	

Figure 6.2

Run	White	Black	Run	White	Black
64	11011	0000001111	960	011010100	0000001110011
128	10010	000011001000	1024	011010101	0000001110100
192	010111	000011001001	1088	011010110	0000001110101
256	0110111	000001011011	1152	011010111	0000001110110
320	00110110	000000110011	1216	011011000	0000001110111
384	00110111	000000110100	1280	011011001	0000001010010
448	01100100	000000110101	1344	011011010	0000001010011
512	01100101	0000001101100	1408	011011011	0000001010100
576	01101000	0000001101101	1472	010011000	0000001010101
640	01100111	0000001001010	1536	010011001	0000001011010
704	011001100	0000001001011	1600	010011010	0000001011011
768	011001101	0000001001100	1664	011000	0000001100100
832	011010010	0000001001101	1728	010011011	0000001100101
896	011010011	0000001110010			

Figure 6.3

00 0001000000 00000000111111110000000000011111111100000000000000000000000000000000000111100000

We have the following:

Length	Colour	Code
80	White	$11011+101010$
73	White	$11011+10100$
1	Black	010
6	White	1110
8	White	1011
8	Black	000101
11	White	01000
9	Black	000100
35	White	00010100
4	Black	011
5	White	1100

We have reduced the data from 240 bits to 64 bits, a reduction of about three quarters.

Compressing fax data

First, we need to encode the terminating and make-up codes. We will use arrays for direct indexing, but lists for each element, since we do not need random access to each bit. This is shown in Figure 6.4. Now, we can write a function which, given a length of run and a colour, gives the appropriate code as a list of bits:

```
code : bool }->\mathrm{ int }->\mathrm{ int list
let rec code isblack length =
    if length > 1791 || length < 0 then
        raise (Invalid_argument "code: bad length")
    else
        if length > 64 then
            let m =
                if isblack
                        then black_make_up_codes.(length / 64 - 1)
                    else white_make_up_codes.(length / 64 - 1)
            in
                m @ code isblack (length mod 64)
        else
            if isblack
                then black_terminating_codes.(length)
            else white_terminating_codes.(length)
```

Now, a function which, given the current colour, an input_bits, the current number of like bits read, and the width of the image, returns a pair of the number of like bits, and the colour:

```
read_up_to : int }->\mathrm{ input_bits }->\mathrm{ int }->\mathrm{ int }->\mathrm{ int }\times\mathrm{ int
let rec read_up_to v i n w =
    if n >= w then ( }\textrm{n},\textrm{v}\mathrm{ ) else
        if peekbit i = v
        then (ignore (getbit i); read_up_to v i (n + 1) w)
        else ( }n,v
```

For example, the first call to read_up_to will calculate (80, 0). Now we can write the main function. Given an input_bits and output_bits, and the width and height of the image, for each line we check if a zero-width white run needs to be added, and then call encode_fax_line.

```
white_terminating_codes : int list array
black_terminating_codes : int list array
white_make_up_codes : int list array
black_make_up_codes : int list array
let white_terminating_codes =
    [|[0; 0; 1; 1; 0; 1; 0; 1];
        [0; 0; 0; 1; 1; 1];
        [0; 1; 1; 1];
        [1; 0; 0; 0];
        [1; 0; 1; 1];
        [1; 1; 0; 0]; and so on.
let black_terminating_codes =
    [|[0; 0; 0; 1; 1; 0; 1; 1; 1];
        [0; 1; 0];
        [1; 1];
        [1; 0];
        [0; 1; 1];
        [0; 0; 1;1]; and so on...
let white_make_up_codes =
    [|[1; 1; 0; 1; 1];
        [1; 0; 0; 1; 0];
        [0; 1; 0; 1; 1; 1];
        [0; 1; 1; 0; 1; 1; 1];
        [0; 0; 1; 1; 0; 1; 1; 0];
        [0; 0; 1; 1; 0; 1; 1; 1];
        and so on...
let black_make_up_codes =
    [|[0; 0; 0; 0; 0; 0; 1; 1; 1; 1];
        [0; 0; 0; 0; 1; 1; 0; 0; 1; 0; 0; 0];
        [0; 0; 0; 0; 1; 1; 0; 0; 1; 0; 0; 1];
        [0; 0; 0; 0; 0; 1; 0; 1; 1; 0; 1; 1];
        [0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 1; 1];
        [0; 0; 0; 0; 0; 0; 1; 1; 0; 1; 0; 0];
        and so on...
```

Figure 6.4

```
encode_fax : input_bits }->\mathrm{ output_bits }->\mathrm{ int }->\mathrm{ int }->\mathrm{ unit
let encode_fax i o w h =
    let rec encode_fax_line i o w =
        if w > 0 then
            let n, isblack = read_up_to (peekbit i) i 0 w in
            List.iter (putbitint o) (code isblack n);
            encode_fax_line i o (w - n)
    in
        for }x=1\mathrm{ to }h\mathrm{ do
            if peekbit i then List.iter (putbitint o) (code true 0);
            encode_fax_line i o w
        done
```

Now we can write a function process, just like we did in the byte-by-byte example, but for input_bits and output_bits. We must be sure to flush the output. The main compress_string_ccitt function is then simple:

```
process : (input_bits }->\mathrm{ output_bits }->\mathrm{ int }->\mathrm{ int }->\mathrm{ unit) }
            string }->\mathrm{ int }->\mathrm{ int }->\mathrm{ string
compress_string_ccitt : (int }->\mathrm{ int }->\mathrm{ unit) }->\mathrm{ string }->\mathrm{ int }->\mathrm{ int }->\mathrm{ string
let process f s w h =
    let b = Buffer.create (String.length s) in
    let ibits = input_bits_of_input (input_of_string s) in
    let obits = output_bits_of_output (output_of_buffer b) in
        f ibits obits w h;
        flush obits;
        Buffer.contents b
let compress_string_ccitt = process encode_fax
```

For our full input data, the input string is $80 \times 21=1680$ bits long, and the compressed string is 960 bits long, a compression ratio of 7:4.

Decompressing fax data

For decompression, we will write two functions for reading white and black codes. It is easiest to directly encode the decision tree:

```
read_white_code : input_bits }->\mathrm{ int
read_black_code : input_bits }->\mathrm{ int
let rec read_white_code i =
    let a = getbitint i in
    let b = getbitint i in
    let c = getbitint i in
    let d = getbitint i in
        match a, b, c, d with
            0, 1, 1, 1 -> 2
            | 1, 0, 0, 0 -> 3
            | 1, 0, 1, 1 -> 4
            | 1, 1, 0, 0 -> 5
            | 1, 1, 1, 0 -> 6
            | 1, 1, 1, 1 -> 7
            | - ->
    let e = getbitint i in
        match a, b, c, d, e with
            1, 0, 0, 1, 1 -> 8
            | 1, 0, 1, 0, 0 -> 9
            | 0, 0, 1, 1, 1 -> 10
            | 0, 1, 0, 0, 0 -> 11
            | 1, 1, 0, 1, 1 -> 64 + read_white_code i
            | 1, 0, 0, 1, 0 -> 128 + read_white_code i
            | - ->
    let f = getbitint i in
        match a, b, c, d, e, f with
            0, 0, 0, 1, 1, 1 -> 1 and so on...
let rec read_black_code i =
    let a = getbitint i in
    let b = getbitint i in
        match a, b with
            1, 1 -> 2
            | 1, 0 -> 3
            | _ ->
    let c = getbitint i in
            match a, b, c with
                0, 1, 0 -> 1
            | 0, 1, 1 -> 4
            | _ ->
    let d = getbitint i in
    match a, b, c, d with
        0, 0, 1, 1 -> 5
                            and so on...
```

Now, decoding is relatively simple. We decode runs for each line, until the width is all used up, and do this for each line. We read white and black codes alternately - each line begins on white. We can use process again:

```
decode_fax : input_bits }->\mathrm{ output_bits }->\mathrm{ int }->\mathrm{ int }->\mathrm{ unit
decompress_string_ccitt : (int }->\mathrm{ int }->\mathrm{ unit) }->\mathrm{ string }->\mathrm{ int }->\mathrm{ int }->\mathrm{ string
let decode_fax i o w h =
    let lines = ref h in
    let pixels = ref w in
    let iswhite = ref true in
        while !lines > 0 do
        while !pixels > 0 do
            let n =
                            (if !iswhite then read_white_code else read_black_code) i
                    in
                    for x = 1 to n do
                            putbitint o (if !iswhite then 0 else 1)
                    done;
                    pixels := !pixels - n;
                    iswhite := not !iswhite
            done;
            iswhite := true;
            pixels := w;
            lines := !lines - 1
        done
let decompress_string_ccitt = process decode_fax
```

We can verify our code by evaluating $s=$ decompress_string_ccitt (compress_string_ccitt s) for our example data.

Questions

1. How much complexity did using the input and output types add to compress and decompress in our byte-by-byte example? Rewrite the functions so they just operate over lists of integers, in functional style, and compare the two.
2. Replace our manual tree of codes with a tree automatically generated from the lists of codes used for compression. The tree will have no data at its branches (since no code is a prefix of another), and will have data at only some of its leaves. Define a suitable data type first.
3. What happens if we compress our data as a single line of 1680 bits instead of 21 lines of 80 ? What happens if we try to compress already-compressed data?
4. Write a function which, given input data, will calculate a histogram of the frequencies of different runs of white and black. This could be used to build custom codes for each image, improving compression.

Chapter 7

Labelled and Optional Arguments

OCaml allows us to label some or all of the arguments to a function, so as to provide a little documentation, to prevent us from accidently swapping two arguments which have the same type, and to allow partial application of arguments more flexibly. Consider a function to fill in part of an array with an element:

```
fill : \alpha array }->\mathrm{ int }->\mathrm{ int }->\alpha->\mathrm{ unit
filled : unit }->\mathrm{ string array
let fill a s l v =
    for }\textrm{x}=\textrm{s}\mathrm{ to s + l - 1 do a.(x) <- v done
let filled () =
    let a = Array.make 100 "x" in
        fill a 20 40 "y";
        a
```

The fill function takes four arguments: the array itself, the start position, length of the fill and the element to use to fill. However, since the start and length are both integers, it is easy to get them the wrong way round. This can be remedied by giving those two arguments labels. A label is introduced by a tilde, followed by the label name, a colon and the argument name itself. Consider the functions fill and filled below. As you can see, we have defined fill with labels, which appear in the type as well. In the first filled function, we call the fill function, citing the labels and giving immediate integers. In the second, we show that it works with other names (as it does, indeed, for any expression). In the third, we show that the labelled arguments may be permuted and rearranged with regard to the other arguments (unlabelled arguments must remain in the correct order relative to one another).

```
fill : \alpha array }->\mathrm{ start:int }->\mathrm{ length:int }->\alpha->\mathrm{ unit
filled : unit }->\mathrm{ string array
let fill a ~start:s ~length:l v =
    for x = s to s + l - l do a.(x) <- v done
let filled () =
    let a = Array.make 100 "x" in
        fill a ~start:20 ~length:40 "y";
        a
let filled () =
    let a = Array.make 100 "x" in
        let st = 20 in
            let ln = 40 in
                fill a ~start:st ~length:ln "y";
                a
let filled () =
    let a = Array.make 100 "x" in
        fill a "y" ~length:20 ~start:40;
        a
```

Another change we can make is to use the label for the name of the argument inside the function too. This simplifies the syntax: we can just write \sim label.

```
fill : \alpha array }->\mathrm{ start:int }->\mathrm{ length:int }->\alpha->\mathrm{ unit
filled : unit }->\mathrm{ string array
let fill a ~start ~length v =
    for x = start to start + length - 1 do a.(x) <- v done
let filled () =
    let a = Array.make 100 "x" in
        let start = 20 in
            let length = 40 in
            fill a ~start ~length "y";
            a
```

You can see that in filled, this "punning" works equally well when calling the function, if we happen to have values with the same names. These two facilities need not be used together, of course.

Labels with partial application

Another common use of labelled arguments is to give flexibility when using partial application. Consider the following function:

```
let divide x y = x / y
```

We can use partial application to write the function which divides ten thousand by each number in a list:

```
let f = divide 10000 in [f 100; f 50; f 20]
```

This yields [100; 200; 500]. But we cannot re-use divide to write the function which divides each number in a list by ten - this would involve partially applying the second argument y first. The design of the divide function has baked in which argument may be partially applied (OCaml lets us partially apply any prefix of the arguments - the first, first and second, first, second and third etc.) For example, we can apply the same function to many lists, using a partially applied List. map but we cannot apply many functions to a single list by providing the list to List. map instead. In our example, we can label the arguments to our divide function:

```
let divide ~x ~y = x / y
```

The type of the function reflects this:

```
    OCaml
# let divide ~x ~y = x / y;;
val divide : x:int -> y:int -> int = <fun>
```

Now we may apply the arguments in either order:

OCaml

```
# let f = divide ~x:10000 in [f 100; f 50; f 20];;
- : int list = [100; 200; 500]
# let f = divide ~y:10000 in [f 100000; f 10000; f 1000];;
- : int list = [10; 1; 0]
```

We can in fact, omit the labels if we are applying arguments in order:

OCaml

```
# let f = divide 10000 in [f 100; f 50; f 20];;
```

- : int list = [100; 200; 500]

Optional arguments

OCaml also allows us to make a labelled argument optional - that is to say, we need not supply it at all. The function which is called without one or more of its arguments can decide what to do. Consider this
simple function spl it which returns a list of singleton lists from an input list, for example returning [[1] ; [2]; [3]] for the input list [1; 2; 3]:

```
split : \alpha list }->\alpha\mathrm{ list list
let rec split l =
    match l with
        [] -> []
    | h::t -> [h] :: split t
```

We would like to extend the function to produce sub-lists of a given size, other than the default of 1 . We can add a labelled argument and adapt the function, using take (which takes a given number of items from the start of a list) and drop (which drops a given number of items from the start of a list) from the Util module described on page xiii:

```
split : chunksize:int }->\alpha\mathrm{ list }->\alpha\mathrm{ list list
let rec split ~chunksize l =
    try
        Util.take l chunksize ::
        split ~chunksize (Util.drop l chunksize)
    with
        _ -> match l with [] -> [] | _ -> [l] last, partial,chunk
```

There are two problems, though. Existing code using the function will not compile, and we must always specify the chunksize argument, even when it will be 1 . This can be remedied by using an optional labelled argument, introduced with a question mark instead of a tilde, and given a default value:

```
split : ?chunksize:int }->\alpha\mathrm{ list }->\alpha\mathrm{ list list
let rec split ?(chunksize = 1) l =
    try
        Util.take l chunksize ::
        split ~chunksize (Util.drop l chunksize)
    with
        _ -> match l with [] -> [] | _ -> [l] last, partial,chunk
```

Notice the question mark appears also in the type. Notice also that in the recursive call to split we can write \sim chunksize instead of \sim chunksize: chunksize as usual. Now our split function can be called with or without this optional argument:

OCaml
\# split [1; 2; 3];

- : int list list = [[1]; [2]; [3]]
\# split ~chunksize:3 [1; 2; 3; 4; 5; 6; 7];;
- : int list list = [[1; 2; 3]; [4; 5; 6]; [7]]

In fact, if we do not give a default value to the optional argument in the definition of split, we have access to its actual implementation - as a value of the option type, either None or Some, and we can match on it:

```
split : ?chunksize:int }->\alpha\mathrm{ list }->\alpha\mathrm{ list list
let rec split ?chunksize l =
    let ch =
        match chunksize with None -> 1 | Some x -> x
    in
        try
            Util.take l ch :: split ~chunksize:ch (Util.drop l ch)
        with
            _ -> match l with [] -> [] | _ -> [l]
```

This is primarily useful when there are several optional arguments.

Labels in the Standard Library

The Standard Library contains three labelled versions of other modules: ListLabels, ArrayLabels and StringLabels. For example, we can write:

OCaml
\# ListLabels.map ~f:(fun x -> x * 2) [1; 2; 3];

- : int list = [2; 4; 6]

If we wish to use the labelled modules by default, the module StdLabels contains these labelled modules under their original names so, by writing "open StdLabels", List.map, Array.blit etc. will now be labelled:

```
    OCaml
# open StdLabels;;
# List.map ~f:(fun x -> x * 2) [1; 2; 3];;
- : int list = [2; 4; 6]
```

These modules do not label all arguments. Typically they just do so for arguments which are functions, and when there are multiple arguments of the same type which may be confused. For example, ArrayLabels. sub of type α array \rightarrow pos:int \rightarrow len:int $\rightarrow \alpha$ array introduces labels to disambiguate the position and length arguments, but does not label in the input array.

Questions

1. The function ArrayLabels . make is not labelled, having type int $\rightarrow \alpha \rightarrow \alpha$ array. When might this cause confusion? Write a labelled version to correct this problem.
2. When we wrote our fill function with labelled arguments, we wanted to prevent someone mistakenly swapping the start and length values. Can you find a way to do this without labelled or optional arguments?
3. Build labelled versions of functions from the Buffer module, choosing which functions and arguments to label as appropriate.
4. Frequently we use an accumulator to make a function tail-recursive, wrapping it up in another function to give the initial value of the accumulator. For example, we might write:
```
map_inner : \alpha list }->(\alpha->\beta)->\alpha\mathrm{ list }->\beta\mathrm{ list
map : (\alpha->\beta)->\alpha list }->\beta\mathrm{ list
let rec map_inner a f l =
    match l with
        [] -> List.rev a
    | h::t -> map_inner (f h :: a) f t
let map f l = map_inner [] f l
```

Use an optional argument to express this as a single function.

Chapter 8

Formatted Printing

OCaml provides facilities for what is called formatted printing. Consider the following function, culled from Chapter 3:

```
string_of_point : point }->\mathrm{ string
let string_of_point p =
    p.label
    ^ " = ("
    ^ string_of_float p.x
    ^ ", '
    ^ string_of_float p.y
    ^ ")"
```

Using the function sprintf ("formatted printing to a string") from the Standard Library module Printf we can build this string more easily:

```
string_of_point : point }->\mathrm{ string
let string_of_point p =
    Printf.sprintf "%s = (%f, %f)" p.label p.x p.y
```

In this example, the format string is "\%s = (\%f, \%f)". The conversion specifications $\% \mathrm{~s}$ and $\% \mathrm{f}$ denote places for a string and the decimal representation of a floating-point number respectively to be substituted into the string. Other characters are simply reproduced from the format string to the output string. We have avoided the inefficient, repeated use of the ${ }^{\wedge}$ operator for string concatenation, and our new example is both shorter and easier to read. Here is a subset of the many conversion specifications available:

Conversion specification	Description
$\% \mathrm{i}$	integer in decimal representation
$\% \mathrm{X}$	integer in hexadecimal, lower case
$\% \mathrm{X}$	integer in hexadecimal, upper case
$\% \mathrm{~S}$	string
$\% \mathrm{f}$	floating-point number
$\% \mathrm{~B}$	boolean
$\% \%$	percent character
$\%!$	flush the output

The sprintf function knows how to match up the conversion specification with the arguments following the format specification at compile time, so run-time errors are avoided:

```
    OCaml
# Printf.sprintf "%s = (%f, %f)" "A" 40 65.8;;
Error: This expression has type int but an expression was expected of type
    float
```

Indeed, even if we use partial application, the type of the resulting function will be calculated:

OCaml

```
# let f = Printf.sprintf "%s = (%f, %f)" "A" 2.45;;
val f : float -> string = <fun>
```

You might be able to guess that there is a little magic going on here - we could not write sprintf ourselves, for example. We can see the rather complicated type of the sprintf function, used for its internal implementation:

> OCaml

```
# Printf.sprintf;;
- : ('a, unit, string) format -> 'a = <fun>
```

For printing numbers, there are some additional pieces of information which can be provided. The format of a conversion specifier is in fact:

\% \langle flags $\rangle\langle$ width $\rangle\langle$. precision \rangle type

Fields enclosed in angle brackets are optional. So far, we have only used the \% character and the type field. The width field defines the width of the representation of the number, and can be used to line things up in columns, here of width six:

```
data : (int }\times\mathrm{ int }\times\mathrm{ int) list
print_header : unit }->\mathrm{ unit
print_line : int }->\mathrm{ int }->\mathrm{ int }->\mathrm{ unit
print_nums : (int }\times\mathrm{ int }\times\mathrm{ int) list }->\mathrm{ unit
let data =
    [(1, 6, 5);
        (2, 18, 4);
        (3, 31, 12);
        (4, 16, 2)]
let print_header () =
    Printf.printf "A | B | C \n";
    Printf.printf "------+-------------\n"
let print_line a b c =
    Printf.printf "%6i| %6i| %6i\n" a b c
let print_nums nums =
    print_header ();
    List.iter (fun (a, b, c) -> print_line a b c) nums
```

This will result in the following output from print_nums data:

Here are some possible values of the flags field:

Flag	Description
-	left-justify within width (the default is to right-justify)
0	pad number within width with zeros instead of spaces
+	prefix positive number with +

The optional precision field specifies the number of digits after the decimal point. For example, let us print some integers and floating-point numbers in columns with differing flags and precisions:

```
data : (int }\times\mathrm{ float }\times\mathrm{ float) list
print_header : unit }->\mathrm{ unit
print_line : int }->\mathrm{ float }->\mathrm{ float }->\mathrm{ unit
print_nums : (int }\times\mathrm{ float }\times\mathrm{ float) list }->\mathrm{ unit
let data =
    [(1, 35.54263, 39.42312);
        (2, 12.31341, 23.24123);
        (3, 13.53342, 23.21457);
        (4, 57.74572, 126.74554)]
let print_header () =
    Printf.printf "A | B | C \n";
    Printf.printf "------+-------+-------\n"
let print_line a b c =
    Printf.printf "%06i| %-6.2f| %-6.2f\n" a b c
let print_nums nums =
    print_header ();
    List.iter (fun (a, b, c) -> print_line a b c) nums
```

This will result in the following output from print_nums data:

A	B	C
000001\|	35.54	39.42
000002 \|	12.31	23.24
000003\|	13.53	24.21
000004 \|	57.75	126.

Printing to other places

Of course, once we have calculated a string using sprint f, we can do with it what we may - however, for convenience and efficiency, the Printf module provides several other functions:

Function	Description
printf	writes to standard output (printf format arg1...argN)
eprintf	writes to standard error (eprintf format arg1...argN)
bprintf	writes to a given Buffer.t (bprintf buffer format arg1...argN)
fprintf	writes to a given out_channel (fprintf channel format arg1....argN)

These all return unit. For example, to write a point to standard output, using the \%! conversion specification to flush each time so screen update is immediate:

```
print_point : point }->\mathrm{ unit
let print_point p =
    Printf.printf "%s = (%f, %f)%!" p.label p.x p.y
```

It might be argued, though, that it is better to keep string_of_point as the basic function, so it can be reused in other situations, writing the generated string to the screen from the calling function instead.

Questions

1. Given a list of pairs of integers such as $[(1,2) ;(5,6) ;(6,6) ;(7,5)]$, write a function to return a string representation such as " $(1,2)-->(5,6)-->(6,6)-->(7,5)-->(1$, 2) ".
2. Write a function which, given a string, returns another string which represents the first using hexadecimal numbers. For example, the input string Hello should yield the output 48656c6c6f since ' H ' has ASCII code 0×48 and so on.
3. Why does the following code cause a type error?
```
# let mkstring () = "string";;
val mkstring : unit -> string = <fun>
# Printf.printf (mkstring ());
    ;;
Error: This expression has type string but an expression was expected of type
    ('a, out_channel, unit) format =
        ('a, out_channel, unit, unit, unit, unit) format6
```

What can be done to fix it?
4. Use the $*$ syntax described in the Printf module documentation to write a function which can print a table of integers to a given width. For example, given width 10, we might see:
(
1)
(23) 33241)
(
0)

Chapter 9

Searching for Things

How do we look for a sequence in another, longer sequence? Suppose we want to write a function search_list which, given the list p (the pattern) to search for in the list l determines if it exists (i.e. if it is a sub-list). For example, the list [1; 2] is found in [2; 1; 2; 2] but not in [2; 1; 1]. A list p is defined to be a sub-list of a list l if there exist lists x and y such that $l=x @ p @ y$. One, two, three, or all four of x, p, y, l can be the empty list, of course. So, for example, [] is a sub-list of [1; 2; 3] and of []. A list p is a sub-list of l if:

- The length of p is less than or equal to the length of l and either
- The sub-list p is found at the beginning of l, or
- The list p is a sub-list of the tail of l

We can write this out easily, using the take and drop functions from our Util module, described on page xiii:

```
search_list : \alpha list }->\alpha\mathrm{ list }->\mathrm{ bool
let rec search_list p l =
    List.length p <= List.length l
    &&
    (Util.take l (List.length p) = p || search_list p (List.tl l))
```

(Recall that the || operator does not evaluate its right hand side if the left hand side evaluates to true, so this function will exit as soon as it finds a match.) We might be worried about the call List.tl failing, but if l is empty, the pattern must be empty from the first test, and so the condition with Util.take would have succeeded already. You can see that there are two inefficiencies here, the use of List.length on p and l each time around, and the explicit building of the list to check the pattern against with Util.take. Let us remove the first one:

```
search_list_inner : \alpha list }->\mathrm{ int }->\alpha\mathrm{ list }->\mathrm{ int }->\mathrm{ bool
search_list : }\alpha\mathrm{ list }->\alpha\mathrm{ list }->\mathrm{ bool
let rec search_list_inner p len_p l len_l =
    len_p <= len_l
    &&
        (Util.take l len_p = p ||
        search_list_inner p len_p (List.tl l) (len_l - 1))
let search_list p l =
    search_list_inner p (List.length p) l (List.length l)
```

Now, List.length is called only at the beginning. We can also remove Util.take to avoid the construction of intermediate lists, by writing an explicit function to test the pattern against the first len_p items in the lists:

```
equal : \alpha list }->\mathrm{ int }->\alpha\mathrm{ list }->\mathrm{ bool
search_list_inner : \alpha list }->\mathrm{ int }->\alpha\mathrm{ list }->\mathrm{ int }->\mathrm{ bool
search_list : \alpha list }->\alpha\mathrm{ list }->\mathrm{ bool
let rec equal l len p =
    len = 0
    ||
    List.hd l = List.hd p && equal (List.tl l) (len - 1) (List.tl p)
let rec search_list_inner p len_p l len_l =
    len_p <= len_l
    &&
        (equal l len_p p ||
        search_list_inner p len_p (List.tl l) (len_l - 1))
let search_list p l =
    search_list_inner p (List.length p) l (List.length l)
```

This is now about as efficient as our simple approach can get.

Searching in strings

For practical applications, we shall often need to search within strings, or other such random-access structures. Our first list version generalizes easily:

```
search : string }->\mathrm{ string }->\mathrm{ bool
let rec search p s =
    String.length p <= String.length s
    &&
    (String.sub s 0 (String.length p) = p ||
    search p (String.sub s 1 (String.length s - 1)))
```

This time, there is no problem with String. length since, unlike List.length, it runs in constant time. We do have the overhead of the first String.sub, analogous to the Util.take in the list version. The second String. sub is also a problem since, unlike List. tl , it creates a new string.

To solve this, we can define an auxiliary function at which, given pattern p, string s and the length l to test, together with the position in the pattern pp and in the main string $s p$, tests for equality. This is similar to equal in our lists example.

```
at : string }->\mathrm{ int }->\mathrm{ string }->\mathrm{ int }->\mathrm{ int }->\mathrm{ bool
search' : int }->\mathrm{ string }->\mathrm{ string }->\mathrm{ bool
search : string }->\mathrm{ string }->\mathrm{ bool
let rec at p pp s sp l =
    l = 0 || p.[pp] = s.[sp] && at p (pp + 1) s (sp + 1) (l - 1)
let rec search' n p s =
        String.length p <= String.length s - n
    &&
        (at p 0 s n (String.length p) || search' (n + 1) p s)
let search = search' 0
```

The search' function itself has a counter for how far along the main string it is. We initialize this to zero in search.

More flexible searches

We can make our searching function more interesting by allowing the use of some special characters. We shall introduce only these simple constructs:

- A ? character matches zero or one instances of the following character. For example, the pattern ? $a b c$ matches $a b c, b c$, and dbc;
- A * character matches zero or more instances of the following character. So, the pattern $* \mathrm{abc}$ matches bc, abc, and aaabc;
- A + character matches one or more instances of the following character. For example, the pattern $+a b c$ matches $a b c$ and aaabc but not $b c$ or dbc.

Let us add the ? character to begin with. First, we must alter our search ' function's terminating condition - we can no longer just finish when the pattern is longer than the remaining part of the string - the length of the pattern and the length of the characters matching that pattern are no longer always equal. We now
continue only when the position n is less than the length of the string, or it is equal to the length of the string and that length is zero (the latter case is required so that the pattern ?a matches the empty string).

```
search' : int }->\mathrm{ string }->\mathrm{ string }->\mathrm{ bool
search : string }->\mathrm{ string }->\mathrm{ bool
let rec search' n p s =
    (n < String.length s || n = 0 && String.length s = 0) &&
    (at p 0 s n || search' (n + 1) p s)
let search = search' 0
```

Now we can alter the at function itself. We have an initial terminating condition - if the pattern has been used up entirely, we must have matched it. Otherwise, we match on the next character in the pattern, to see if the next part of the pattern matches and, if it does, calculate jump_p (the amount to move forward in the pattern) and jump_s (the amount to move forward in the string).

```
at : string }->\mathrm{ int }->\mathrm{ string }->\mathrm{ int }->\mathrm{ bool
let rec at p pp s sp =
    pp > String.length p - 1 || whole pattern used - match
    match
        match p.[pp] with
        | '?' ->
            if pp + 1 > String.length p - 1 then None end pattern
            else if sp > String.length s - 1 then Some (2, 0) end string
            else if p.[pp + 1] = s.[sp] then Some (2, 1) the character
            else Some (2, 0) any other character
        | C ->
            if sp < String.length s && c = s.[sp] then
                        Some (1, 1)
            else
                None
    with
        None -> false match failure - stop
    | Some (jump_p, jump_s) ->
        at p (pp + jump_p)s (sp + jump_s) match success - continue
```

Note the behaviour of the ? case carefully, with regard to its specification - this kind of matching code can be rather subtle. To deal with * we must have a way of matching zero or more instances of a character, moving as far along the string as possible. The function swallow_all below, given a character ch, a string p and a position $s p$, returns the number of characters which match ch starting at $s p$. We can then add a match case for the $*$ specifier, as shown in Figure 9.1.

The + character can be added with swallow_all too, but we must check that there is at least one matching character. Figure 9.2 shows the whole program in one place.

```
swallow_all : char }->\mathrm{ string }->\mathrm{ int }->\mathrm{ int
at : string }->\mathrm{ int }->\mathrm{ string }->\mathrm{ int }->\mathrm{ bool
let swallow_all ch p sp =
    let x = ref sp in
        while !x < String.length p && p.[!x] = ch do x := !x + 1 done;
        !x
let rec at p pp s sp =
    pp > String.length p - 1 || whole pattern used - match
    match
        match p.[pp] with
        | '?' ->
            if pp + 1 > String.length p - 1 then None end pattern
                    else if sp > String.length s - 1 then Some (2, 0) end string
                    else if p.[pp + 1] = s.[sp] then Some (2, 1) the character
                    else Some (2,0) any other character
        | '*' ->
            if pp + 1 > String.length p - 1 then None else end pattern
                    Some (2, swallow_all p.[pp + 1] p sp) read zero or more
                    else None did not match
        | C ->
            if sp < String.length s && c = s.[sp] then
                        Some (1, 1)
            else
                                None
    with
        None -> false match failure - stop
        Some (jump_p, jump_s) ->
            at p (pp + jump_p) s (sp + jump_s)
                match success - continue
```

Figure 9.1

```
swallow_all : char }->\mathrm{ string }->\mathrm{ int }->\mathrm{ int
at : string }->\mathrm{ int }->\mathrm{ string }->\mathrm{ int }->\mathrm{ bool
search' : int }->\mathrm{ string }->\mathrm{ string }->\mathrm{ bool
search : string }->\mathrm{ string }->\mathrm{ bool
let swallow_all ch p sp =
    let x = ref sp in
        while !x < String.length p && p.[!x] = ch do x := !x + 1 done;
        !x
let rec at p pp s sp =
    pp > String.length p - 1 || whole pattern used - match
    match
        match p.[pp] with
        | '?' ->
            if pp + 1 > String.length p - 1 then None end pattern
            else if sp > String.length s - 1 then Some (2, 0) end string
            else if p.[pp + 1] = s.[sp] then Some (2, 1) the character
            else Some (2, 0) any other character
        | '*' ->
            if pp + 1 > String.length p - 1 then None else end pattern
                        Some (2, swallow_all p.[pp + 1] p sp) read zero or more
        | '+' ->
            if pp + 1 > String.length p - 1 then None end pattern
            else if sp > String.length s - 1 then None end string
            else if p.[pp + 1] = s.[sp] then
                        Some (2, swallow_all p.[pp + 1] p sp) read one or more
                else None
                        did not match
        | C ->
            if sp < String.length s && c = s.[sp] then
                Some (1, 1)
                else
                        None
    with
        None -> false match failure - stop
    | Some (jump_p, jump_s) ->
            at p (pp + jump_p)s (sp + jump_s) match success - continue
let rec search' n ss s =
    (n < String.length s || n = 0 && String.length s = 0) &&
    (at ss 0 s n || search' (n + 1) ss s)
let search = search' 0
```

Figure 9.2

Questions

1. Write a function to return the number of matches of one string in another a) when all matches are considered and b) when only non-overlapping matches are considered.
2. Write functions which return the position and length of the longest prefix of a string in another. That is to say, the longest initial part of the pattern which matches anywhere in the string.
3. Compare the speed of the first two versions of search given in this chapter.
4. Add the special symbol \backslash to our final search program. It indicates that the following symbol is not a special symbol, but a normal character. Note that, we must write ' $\backslash \backslash$ ' for that character in OCaml code.
5. Add a labelled argument of type bool whose value, when true, indicates a case-insensitive search.

Chapter 10

Finding Permutations

How can we calculate the n ! permutations of a given list of length n ? For example, given the list [1; 2 ; 3] we should like to find $[$ [1; $2 ; 3]$; 2 ; $1 ; 3]$; $2 ; 3 ; 1]$; 1 ; 3; 2]; [3; 1; 2]; [3; 2; 1]] or similar (we are not concerned with the order of the list of permutations). So, we require a function of type α list $\rightarrow \alpha$ list list.

Sometimes it is useful with a hard problem like this to simply start writing, working out what gaps there are, and then filling them in. The base case for our perms function is trivial: there is one permutation of the empty list, namely the empty list itself:

```
perms : }\alpha\mathrm{ list }->\alpha\mathrm{ list list
let perms p =
    match p with
        [] -> [[]]
```

For the main case, let us try the most simple decomposition. We calculate the permutations of the tail for free with recursion, and then combine the result in some way with the head:

```
perms : }\alpha\mathrm{ list }->\alpha\mathrm{ list list
let rec perms p =
    match p with
        [] -> [[]]
    | h::t -> combine h (perms t)
```

Here, combine is a function we have yet to concoct. It must take a list of permutations, such as [[3; 2]; [2; 3]] and a single element, such as 1, and produce [[1; 2; 3]; [2; 1; 3]; [2; 3; 1]; [1; 3; $2] ;[3 ; 1 ; 2] ;[3 ; 2 ; 1]]$. The elements of this list can be produced by placing 1 in each possible place in each list in [[3; 2] ; [2; 3]]. So first, we will reduce the problem by using List.map with an as-yet-unwritten function interleave, combining the results with List. concat:

```
combine : }\alpha->\alpha\mathrm{ list list }->\alpha\mathrm{ list
perms : }\alpha\mathrm{ list }->\alpha\mathrm{ list list
let combine x ps =
    List.concat (List.map (interleave x) ps)
let rec perms p =
    match p with
        [] -> [[]]
    | h::t -> combine h (perms t)
```

Now, we just need to build the function interleave which takes an item, such as 1 and a list such as [2; $3]$ and builds the list $[[1 ; 2 ; 3] ;[2 ; 1 ; 3] ;[2 ; 3 ; 1]]$ by placing the item at each possible position in the list.

```
interleave : \alpha ->\alpha list }->\alpha\mathrm{ list }->\alpha\mathrm{ list list
let rec interleave e seen l =
    match l with
        [] -> [seen @ [e]]
    | x::xs -> (seen @ e :: x :: xs) :: interleave e (seen @ [x]) xs
```

This function maintains a list of the elements already seen (which is initially empty), building each new list. When the input list is empty, the final one is generated. Thus, we avoid any kind of counter to know when we are finished. For example, consider a call to interleave in our example:

```
    interleave 1 [] [2; 3]
\Longrightarrow ([] @ [1; 2; 3]) :: interleave 1 ([] @ [2]) [3]
[1; 2; 3] :: interleave 1 [2] [3]
\Longrightarrow [1; 2; 3] :: (([2] @ 1 :: 3 :: []) :: interleave 1 ([2] @ [3]) [])
C [1; 2; 3] :: ([2; 1; 3] :: interleave 1 [2; 3] [])
C [1; 2; 3] :: ([2; 1; 3] :: [[2; 3] @ [1]]
C [[1; 2; 3]; [2; 1; 3]; [2; 3; 1]]
```

Now we can write the whole thing out:

```
interleave : \alpha 偣 list }->\alpha\mathrm{ list }->\alpha\mathrm{ list list
combine : }\alpha->\alpha\mathrm{ list list }->\alpha\mathrm{ list
perms : }\alpha\mathrm{ list }->\alpha\mathrm{ list list
let rec interleave e seen l =
    match l with
        [] -> [seen @ [e]]
    | x::xs -> (seen @ e :: x :: xs) :: interleave e (seen @ [x]) xs
let combine x ps =
    List.concat (List.map (interleave x []) ps)
let rec perms p =
    match p with
        [] -> [[]]
    | h::t -> combine h (perms t)
```

Here are the 24 permutations of the list $[1 ; 3 ; 5 ; 7]$:

```
# perms [1; 3; 5; 7];;
- : int list list =
[[1; 3; 5; 7]; [3; 1; 5; 7]; [3; 5; 1; 7]; [3; 5; 7; 1]; [1; 5; 3; 7];
    [5; 1; 3; 7]; [5; 3; 1; 7]; [5; 3; 7; 1]; [1; 5; 7; 3]; [5; 1; 7; 3];
    [5; 7; 1; 3]; [5; 7; 3; 1]; [1; 3; 7; 5]; [3; 1; 7; 5]; [3; 7; 1; 5];
    [3; 7; 5; 1]; [1; 7; 3; 5]; [7; 1; 3; 5]; [7; 3; 1; 5]; [7; 3; 5; 1];
    [1; 7; 5; 3]; [7; 1; 5; 3]; [7; 5; 1; 3]; [7; 5; 3; 1]]
```

Note that our function does not work properly when there are duplicates in the list - it will treat each item as if it were different:

```
# perms [1; 1; 2];;
- : int list list =
[[1; 1; 2]; [1; 1; 2]; [1; 2; 1]; [1; 2; 1]; [2; 1; 1]; [2; 1; 1]]
```

In this implementation, we run into problems with the lack of tail recursion well before we run out of memory to store the permutations:

```
# List.length (perms [1; 2; 3; 4; 5; 6; 7; 8]);;
- : int = 40320
# List.length (perms [1; 2; 3; 4; 5; 6; 7; 8; 9]);;
- : int = 362880
# List.length (perms [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]);;
Stack overflow during evaluation (looping recursion?).
```

To fix this up, we must rewrite interleave to be tail recursive by adding an accumulating argument:

```
interleave : \alpha 位 list }->\alpha\mathrm{ list }->\alpha\mathrm{ list list
let rec interleave acc e seen l =
    match l with
        [] -> (seen @ [e]) :: acc
    | x::xs ->
        interleave ((seen @ e :: x :: xs) :: acc) e (seen @ [x]) xs
```

Now, we can go as far as we have time and memory (though the permutations are in a different order can you fix that?)

Another method of finding permutations, which gives a shorter solution, is to choose each element of the input list and use that as the first element, prepending it to each of the permutations of the remaining list. First, let us define a function to remove the (first) occurrence of a given element from a list:

```
without : \alpha }->\alpha\mathrm{ list }->\alpha\mathrm{ list
let rec without x l =
    match l with
        [] -> []
    | h::t -> if h = x then t else h :: without x t
```

It need not be tail-recursive, since this list will always be small. Now, we can write the new perms function. The base case is the same. In the main case, we use List.map twice. The inner map prepends a given element to each of the permutations of the list without that element. The outer map uses that over each of the elements of the input, selecting each in turn as the first element. The results are then concatenated.

```
perms : \alpha list }->\alpha\mathrm{ list list
let rec perms l =
    match l with
        [] -> [[]]
    | l ->
        List.concat
            (List.map
                            (fun x ->
                            List.map (fun l -> x :: l) (perms (without x l)))
                l)
```

This function has the advantage of producing the items in proper lexicographic (dictionary) order:
[[1; 2; 3]; [1; 3; 2]; [2; 1; 3]; [2; 3; 1]; [3; 1; 2]; [3; 2; 1]]

Permutations one at a time

There is a well-known imperative algorithm for generating the lexicographically-next permutation given the current one. We can use this to build a function to generate all the permutations without the heavy
recursion of our previous programs and, more interestingly, to build a lazy list of all the permutations, which requires minimal computation each time a new permutation is needed.

We begin with a sorted array, such as $[|1 ; 2 ; 3|]$. This is the first permutation. We generate new permutations until the array is in reverse-sorted order - [|3; 2; 1|]-this is the final permutation. In order to find the lexicographically-next permutation there are four steps:

1. Find the right-most item which is smaller than its next item. Call this the "first" item. This is the item which must be altered to find the permutation which is the smallest distance from the current one in the lexicographic order.
2. Find the smallest item to the right of the "first" item which is greater than it. Call this the "last" item. This is the item which will go in the position of the "first" item.
3. Swap these two characters.
4. Sort everything to the right of the original index of the "first" item into lexicographic order. This ensures we have selected the next permutation, not any later one.

Marking the first item with F and the last item with L, we have $\left[\left|1 ; 2^{F} ; 3^{L}\right|\right] \longrightarrow\left[\left|1^{F} ; 3 ; 2^{L}\right|\right] \longrightarrow$ $\left[\left|2 ; 1^{\mathrm{F}} ; 3^{\mathrm{L}}\right|\right] \longrightarrow\left[\left|2^{\mathrm{F}} ; 3^{\mathrm{L}} ; 1\right|\right] \longrightarrow\left[\left|3 ; 1^{\mathrm{F}} ; 2^{\mathrm{L}}\right|\right] \longrightarrow[|3 ; 2 ; 1|]$. The first function finds the index of the "first item" in an array:

```
first : \alpha array }->\mathrm{ int
let first arr =
    let f = ref (Array.length arr - 1) in
        for x = 0 to Array.length arr - 2 do
            if arr.(x) < arr.(x + 1) then f := x
        done;
        !f
```

The corresponding last function is a little more awkward, needing to check two conditions and using a special initializer, rather than simply initializing with the last element as first does.

```
last : \alpha array }->\mathrm{ int }->\mathrm{ int
let last arr f =
    let c = ref (-1) in
        for x = Array.length arr - 1 downto f + 1 do
            if arr.(x) > arr.(f) && (!c = (-1) || arr.(x) < arr.(!c))
                then c := x
        done;
        !c
```

Two simple utility functions, to swap given indices in an array, and sort a sub-array given its offset and length:

```
swap : \alpha array }->\mathrm{ int }->\mathrm{ int }->\mathrm{ unit
sort_subarray : \alpha array }->\mathrm{ int }->\mathrm{ int }->\mathrm{ unit
let swap arr a b =
    let t = arr.(a) in
        arr.(a) <- arr.(b);
        arr.(b) <- t
let sort_subarray arr o l =
    let sub = Array.sub arr o l in
        Array.sort compare sub;
        Array.blit sub 0 arr o l
```

Now we are ready to write next_permutation:

```
next_permutation : \alpha array }->\alpha\mathrm{ array
let next_permutation arr_in =
    let arr = Array.copy arr_in in
    let f = first arr in
    let c = last arr f in
        swap arr f c;
        sort_subarray arr (f + 1) (Array.length arr - 1 - f);
        arr
```

We define a predicate for non-increasing-ness:

```
non_increasing : \alpha array }->\mathrm{ bool
let non_increasing arr =
    Array.length arr <= 1 ||
    let r = ref true in
        for x = 0 to Array.length arr - 2 do
            if arr.(x + 1) > arr.(x) then r := false
        done;
        !r
```

And, finally, we are finished:

```
all_permutations : \alpha array }->\alpha\mathrm{ array array
let all_permutations arr =
    let copy = Array.copy arr in
        Array.sort compare copy;
        let perm = ref copy in
        let perms = ref [copy] in
        while not (non_increasing !perm) do
                perm := next_permutation !perm;
                perms := !perm :: !perms;
            done;
            Array.of_list (List.rev !perms)
```

Note that this imperative algorithm works correctly with repetitions of elements - it will include the permutation only once. We can now generate a repeating lazy list of all the permutations of a given list, using our standard lazy list type from Chapter 2:

```
perms : \alpha array }->\alpha\mathrm{ array lazylist
let rec perms x =
    Cons (x, fun () ->
        if non_increasing x then
            let c = Array.copy x in
                Array.sort compare c;
                perms C
    else
            perms (next_permutation x))
```

This very imperative algorithm has now been dressed in functional clothes.

Questions

1. Write a function to generate all the unordered combinations of items from a list. For example, for the list [1; 2; 3], the result, whose order is not important, might be [[]; [1] ; [2]; [3]; [1; 2]; [1, 3]; [2; 3]; [1; 2; 3]].
2. Generate all the "permicombinations" - that is all the permutations of all the combinations of a list. For the list [1; 2; 3] this might be [[] ; [1] ; [2] ; [3]; [1; 2]; [2; 1]; [1; 3]; [3; 1]; [2; 3]; [3; 2]; [1; 2; 3]].
3. Write a function to give the list of all possible lists of length n containing just true and false.
4. The sorting phase of the imperative algorithm can be replaced with a simple list reversal, since the items are already in reverse lexicographic order each after the swap. Implement this.
5. The imperative algorithm could be defined in terms of lists, in a functional fashion. Demonstrate this.

Chapter 11

Making Sets

In this chapter, we will look at various naive and sophisticated data structures for storing sets. We will look at their theoretical performance characteristics and time them against one another on various sorts of data to learn about their performance in practice. Along the way, we will learn about some of OCaml's more advanced modular abstraction mechanisms. For each set representation, we will give the following five functions:

- set_of_list which builds a set from a list (which may contain duplicates). The empty set is built with set_of_list [];
- list_of_set which returns, in no particular order, a list of the elements in the set;
- insert which inserts a given element into the set, if it is not already present;
- size which returns the number of elements in the set; and
- member which tests if an element is present in the set.

Simple lists

Figure 11.1 exhibits these five functions by representing sets using the built-in list type. They are largely trivial, save for set_of_list which works by repeated insertion into the existing set.

These functions are not terribly efficient. The member, size, and insert functions take time proportional to the size of the set. The set_of_list function is worse: it takes time proportional to the square of the size of the set, since it uses insert for each element on a growing list. The only bright spot is list_of_set which (of course) runs in constant time.

We have not hidden the type of the sets - they may be manipulated by the caller as plain lists - and so the abstraction is not safe or complete. Here is an interface as a .mli file, abstracting the real type of the set to just α t .

```
member : \alpha }->\alpha\mathrm{ list }->\mathrm{ bool
insert : \alpha 
set_of_list : \alpha list }->\alpha\mathrm{ list
list_of_set : \alpha -> \alpha
size : \alpha list }->\mathrm{ int
let member = List.mem
let insert x l =
    if member x l then l else x :: l
let rec set_of_list l =
    match l with [] -> [] | h::t -> insert h (set_of_list t)
let list_of_set x = x
let size = List.length
```

Figure 11.1

```
type 'a t
val set_of_list : 'a list -> 'a t
val list_of_set : 'a t -> 'a list
val insert : 'a -> 'a t -> 'a t
val size : 'a t -> int
val member : 'a -> 'a t -> bool
```

Here is the corresponding. ml file with the implementation:

```
type 'a t = 'a list
let member = List.mem
let insert x l =
    if member x l then l else x :: l
let rec set_of_list l =
    match l with [] -> [] | h::t -> insert h (set_of_list t)
let list_of_set x = x
let size = List.length
```

```
module SetList :
    sig
        type 'a t
        val set_of_list : 'a list -> 'a t
        val list_of_set : 'a t -> 'a list
        val insert : 'a -> 'a t -> 'a t
        val size : 'a t -> int
        val member : 'a -> 'a t -> bool
    end
=
    struct
        type 'a t = 'a list
        let member = List.mem
        let insert x l =
            if member x l then l else x :: l
        let rec set_of_list l =
            match l with [] -> [] | h::t -> insert h (set_of_list t)
        let list_of_set x = x
        let size = List.length
    end
```

Figure 11.2

Recall that, by hiding the implementation behind an interface, we can swap implementations at will, making them more efficient, or fixing bugs.

Since we wish to build several of these set implementations, and benchmark them, it is a good time to look at OCaml's syntax for putting several modules in a single source file. Figure 11.2 exhibits a piece of OCaml which corresponds to our. ml and. mli file all in one place:
The general syntactic form is:

```
module module name :
    sig
        contents of .mli file
    end
=
    struct
        contents of .ml file
    end
```

When this code is pasted into the top level, or loaded in some other way, a new module SetList is available, with functions like SetList. size available through the given interface.

Since all our different implementations of sets will share the same interface as SetList, we will split this module definition up using the module type syntax to define the signature, and the include keyword to use that signature for our module:

```
module type SetType =
    sig
        type 'a t
        val set_of_list : 'a list -> 'a t
        val list_of_set : 'a t -> 'a list
        val insert : 'a -> 'a t -> 'a t
        val size : 'a t -> int
        val member : 'a -> 'a t -> bool
    end
module SetList : sig include SetType end =
    struct
        type 'a t = 'a list
        let list_of_set x = x
        let insert x l = x :: l
        let rec set_of_list l =
            match l with [] -> [] | h::t -> insert h (set_of_list t)
        let size = List.length
        let member = List.mem
    end
```

Thus, we have avoided duplication of the interface. Each new set representation will just need an implementation.

Performance

Each use of the set data type is different - sometimes there is an initial phase of insertions, followed by millions of membership tests with no insertions. Sometimes insertions and membership tests are equally likely. Some functions may not be required at all. We shall consider two benchmarks for insertion:

- the insertion of the integers $1 \ldots 50000$ in a randomized order; and
- the insertion, in order, of the 50000 integers $1 \ldots 50000$.

Then, we will, for each of these "ordered" and "unordered" cases:

- perform 50000 membership tests in the range of numbers $1 \ldots 100000$, so that half are present and half not;
- calculate the number of elements in the set;
- calculate the size of the set.

Here are the results:

	Unordered (sets represented with lists)	Ordered
Insertion	20.5 s	17.5 s
Membership	34.7 s	17.8 s
Elements	0 s	0 s
Size	0 s	0 s

The big difference is in the time for the membership tests, due to the balance or lack of balance in the tree, as expected. When we introduce more ways of storing sets, we will do the same tests, and compare the results.

Binary Search Trees

A binary search tree is a binary tree with the property that all elements in the left sub-tree of each node are smaller than it, and all elements in the right sub-tree are larger. If the tree is reasonably well balanced, we can reach any element in time proportional to the logarithm of the number of elements in the set.

Just like the representation of sets, there are multiple representations of sets, depending upon the order of insertion of the elements. Here are the trees corresponding to the insertion orders 123, 132, 213, 231, 312, 321:

2

2

We can see that when the items in the set are added in numerical or reverse-numerical order, this data structure is equivalent to, and has no better performance, than a simple list. The data type is the usual one for binary trees:

```
type 'a t = Lf | Br of 'a t * 'a * 'a t
```

The SetTree module is shown in Figure 11.3.
When the tree is balanced insert and member run in logarithmic time. The size function runs in linear time, since it must visit every node irrespective of the balance. The same is true of list_of_set. When unbalanced, insert and member take linear time. We can extend our table now:

```
module SetTree : sig include SetType end =
    struct
        type 'a \(\mathrm{t}=\mathrm{Lf} \mid \mathrm{Br}\) of 'a \(\mathrm{t} * \mathrm{~A}^{\prime} \mathrm{a} *\) 'a t
        let rec list_of_set s =
            match s with
                Lf -> []
                Br (l, x, r) -> list_of_set l @ [x] @ list_of_set r
        let rec insert x s =
            match s with
                Lf -> Br (Lf, x, Lf)
        | \(\operatorname{Br}(l, y, r)\)->
                    if \(x=y\) then \(\operatorname{Br}(l, y, r)\)
                    else if \(x<y\) then \(B r\) (insert \(x l, y, r\) )
                else \(\operatorname{Br}(l, y, i n s e r t x r)\)
    let rec set_of_list l =
        match \(l\) with
                [] -> Lf
            | h::t -> insert h (set_of_list t)
        let rec size \(s=\)
            match s with
                Lf -> 0
            | \(\operatorname{Br}(l,-, r)\)-> \(1+\) size \(l+\) size \(r\)
    let rec member \(\mathrm{x} \mathrm{s}=\)
        match \(s\) with
                Lf -> false
            \(\left.\mid \operatorname{Br}(-, y,)^{\prime}\right)\) when \(x=y ~->~ t r u e ~\)
            \(\mid \operatorname{Br}(l, y, r)->\) if \(x<y\) then member \(x\) l else member \(x r\)
    end
```

Figure 11.3

	Unordered	Ordered		Unordered	Ordered
(Sets represented with lists)			(Sets represented with trees)		
Insertion	20.4 s	17.5 s	Insertion	0.09 s	116.6 s
Membership	34.8 s	17.8 s	Membership	0.02 s	33.4 s
Elements	0 s	0 s	Elements	0.02 s	98.0 s
Size	0 s	0 s	Size	0 s	0 s

Notice that, in the unordered case, performance is dramatically increased for insertion and membership, by about two hundred times. However, if the elements are inserted in order, the unbalanced tree actually takes longer to build than its equivalent list. Finding all the elements as a list also takes a huge amount of time in the ordered insertion case.

Balanced trees

We have seen that binary search trees are only useful if they are reasonably close to balanced. In recent decades, several data structures have been developed which try to keep a binary tree "reasonably balanced", such that operations remain efficient. "Red-Black trees" are one such commonly used and interesting data structure. Red-Black trees were invented by Rudolf Bayer, and the functional formulation presented here is due to Chris Okasaki in his landmark book "Purely Functional Data Structures" (Cambridge University Press, 1998).

A Red-Black tree is an ordinary binary tree with one addition: each node is either Red or Black. Leaf nodes are considered Black. The balance is ensured by every operation which alters the tree (in our case, just insert) so that the following remains true:

- the children of each Red node are Black; and
- each path from root to leaf contains an equal number of Black nodes.

These two rules, together, ensure that the tree is reasonably balanced - the longest path from root to leaf (Black, Red, Black, Red ... Black) is no more than twice as long as the shortest path (Black, Black, Black ... Black). Thus, the maximum depth of a Red-Black tree is proportional to the logarithm of the number of elements in the set. Here is an example valid Red-Black tree, with 3 black nodes in each path:

Here are the types for representing a Red-Black tree - we have just added a new colour field to each branch of the tree:

```
type colour = R | B
```

```
type 'a t = Lf | Br of colour * 'a t * 'a * 'a t
```

The list_of_set, size, and member functions are simple to alter: they just ignore the colour field. The insert function, however, must be modified to preserve the Red-Black properties.

As with ordinary binary search trees, the new node added by insert will be in place of a leaf node. We colour it Red, to make sure that the invariant that no path can have a differing number of black nodes in it is not broken. However, this may break the other invariant (that no Red node has a Red parent). It turns out that, by considering the parent and grandparent of the newly-inserted node, performing a simple operation, and possibly continuing this process upward, we can restore this invariant, and efficiently. The following diagrams, à la Okasaki, illustrate the process:

In each case, the nodes x, y, z and the sub-trees $\alpha, \beta, \gamma, \delta$ remain in the same order, so the binary tree invariant is preserved. Pattern matching is particularly elegant here, since all but one of our cases have the same result:

```
balance : colour }\times\alpha\textrm{t}\times\alpha\times\alpha\textrm{t}->\alpha\textrm{t
let balance t =
    match t with
        (B, Br (R, Br (R, a, x, b), y, c), z, d)
    | (B,Br (R, a, x, Br (R, b, y, c)), z, d)
    | (B, a, x, Br (R, Br (R, b, y, c), z, d))
    | (B, a, x, Br (R, b, y, Br (R, C, z, d))) ->
            Br (R, Br (B, a, x, b), y, Br (B, c, z, d))
    | (a, b, c, d) -> Br (a, b, c, d)
```

Now, we can write the insertion function itself:

```
insert_inner : \alpha }->\alpha\mathbf{t}->\alpha\mathbf{t
insert : \alpha }->\alpha\mathbf{t}->\alpha\mathbf{t
let rec insert_inner x s =
    match s with
        Lf -> Br (R, Lf, x, Lf)
    | Br (c, l, y, r) ->
            if x < y
                then balance (c, insert_inner x l, y, r)
                else if x > y then balance (c, l, y, insert_inner x r)
                else Br (c, l, y, r)
let insert x s =
    match insert_inner x s with
        Br (_, l, y, r) -> Br (B, l, y, r)
        Lf -> assert false
```

Note that we wrap it in a function to set the root of the tree to Black - balancing will not do this, since the root has no parent or grandparent to compare with, and so we may otherwise end up with a red root with a red child. The full module is shown in Figure 11.4.

Since we have guaranteed that the tree will be reasonably balanced, there is no need for tail recursive functions, even for huge sets. The effect of balanced trees on performance is clear, and there appears to be little or no slow-down from the more complex Red-Black data structure:
$\left.\begin{array}{llllll}\hline & \begin{array}{c}\text { Unordered } \\ \text { (Sets represented with lists) }\end{array} & & \text { Ordered } & & \begin{array}{c}\text { Unordered }\end{array} \\ \hline \text { (Sets represented with trees) }\end{array}\right)$

```
module SetRedBlack : sig include SetType end =
    struct
        type colour \(=\mathrm{R} \mid \mathrm{B}\)
        type 'a \(\mathrm{t}=\mathrm{Lf} \mid \mathrm{Br}\) of colour * 'a \(\mathrm{t} *\) 'a * 'a t
        let rec list_of_set \(s=\)
            match \(s\) with
                Lf -> []
```



```
        let balance \(\mathrm{t}=\)
            match \(t\) with
                ( \(B, \operatorname{Br}(R, \operatorname{Br}(R, a, x, b), y, C), z, d)\)
            | ( \(B, \operatorname{Br}(R, a, x, \operatorname{Br}(R, b, y, C)), z, d)\)
            | ( \(B, a, x, \operatorname{Br}(R, \operatorname{Br}(R, b, y, C), z, d))\)
            | (B, a, x, Br (R, b, y, Br (R, C, z, d))) ->
                    \(\operatorname{Br}(\operatorname{R}, \operatorname{Br}(B, a, x, b), y, \operatorname{Br}(B, C, z, d))\)
            \(\mid(a, b, c, d) \rightarrow \operatorname{Br}(a, b, c, d)\)
        let rec insert_inner x s =
            match s with
                Lf -> Br (R, Lf, x, Lf)
            | \(\mathrm{Br}(\mathrm{c}, \mathrm{l}, \mathrm{y}, \mathrm{r})\)->
                    if \(x<y\)
                        then balance ( \(c\), insert_inner \(x l, y, r\) )
                        else if \(x>y\) then balance ( \(c, l, y\), insert_inner \(x r\) )
                        else \(\operatorname{Br}(c, l, y, r)\)
        let insert \(\times \mathrm{s}=\)
            match insert_inner \(x\) s with
                \(\operatorname{Br}\left({ }_{-}, l, y, r\right)->\operatorname{Br}(B, l, y, r)\)
                Lf -> assert false
        let rec set_of_list l =
            match l with
                [] -> Lf
            | h::t -> insert h (set_of_list t)
        let rec size \(s=\)
            match s with
                Lf -> 0
            | \(\operatorname{Br}(-, l, \quad, r)\)-> \(1+\) size \(l+s i z e r\)
        let rec member \(x\) s =
            match \(s\) with
                Lf -> false
            | \(\operatorname{Br}\left(\_, l, y, r\right)->\)
                \(x=y| | i f x>y\) then member \(x \quad r\) else member \(x \quad l\)
    end
```

Figure 11.4

Hash Tables

A hash table is a data structure designed to provide very fast insertion of and access to data in sets and maps. It holds a set of buckets $0 \ldots n$. When we insert a value into the set, it is processed via a hash function which allocates it to a bucket, in such a manner that there should be a roughly uniform distribution of values among the buckets. When we need to test membership for an item, the same hash function is applied, and we need only search in one bucket. If the hash function works well and the number of buckets is appropriate, lookup is in constant time regardless of how many items are in the set.

For example, if the hash function is $x \longrightarrow x \bmod 23$ and the data to be inserted is $34,2,67,3,4,84$, $1467,7432,48,1$ then the buckets would be $11,2,21,3,4,15,18,3,1,1$. The membership test for 67 now consists of applying the hash function, and then searching in bucket 21 to see if 67 is there.

The OCaml Standard Library provides a hash table implementation in the module Hashtbl. To build a hash table for a set, we use a hash table which maps from α to unit, of type (α, unit) Hashtbl.t. It is simple to build an implementation matching our signature, using the functions Hashtbl.mem, Hashtbl.add, Hashtbl. create, and Hashtbl.iter, as shown in Figure 11.5.

The disadvantage is that hash tables are mutable data structures, and so operations like insert mutate the structure. The result of insert, then, alters the set rather than creating a new set. This means that whilst the SetType interface is technically satisfied, our intended abstraction is actually broken. Such is mutability. The performance on our benchmarks, however, is clear:

	Unordered (Sets represented with lists)		Ordered		Unordered (Sets represented with trees)
Insertion	20.4 s	17.5 s	Insertion	0.09 s	116.6 s
Membership	34.8 s	17.8 s	Membership	0.02 s	33.4 s
Elements	0 s	0 s	Elements	0.02 s	98.0 s
Size	0 s	0 s	Size	0 s	0 s
	Unordered	Ordered		Unordered	Ordered
(Sets represented with Red-Black trees)	(Sets represented with hash tables)				
Insertion	0.11 s	0.06 s	Insertion	0.014 s	0.007 s
Membership	0.01 s	0.02 s	Membership	0.012	0.005 s
Elements	0.03 s	0.01 s	Elements	0.004 s	0.0022 s
Size	0 s	0 s	Size	0 s	0 s

The benchmarking programs may be found in the online resources.

```
module SetHashtbl : sig include SetType end =
    struct
        type 'a t = ('a, unit) Hashtbl.t
        let list_of_set s =
            Hashtbl.fold (fun x () l -> x :: l) s []
        let set_of_list l =
            let s = Hashtbl.create (List.length l) in
                List.iter (fun x -> Hashtbl.add s x ()) l;
                s
    let member x s = Hashtbl.mem s x
    let insert x s =
        if not (member x s) then Hashtbl.add s x ();
        s
        let size = Hashtbl.length
    end
```

Figure 11.5

Questions

1. Compare our set representations with regard to the amount of memory required to create and store them. You can use the functions from the Gc module in OCaml's Standard Library to find out how many words of memory have been allocated before and after allocating a large set in each set representation.
2. Write functions (naive if necessary) to perform the "union" operation on sets in each representation. The union of two sets is the set of elements present in one or the other or both of them. After the operation, both inputs should still be available as sets.
3. OCaml has a built-in Set module. It uses advanced module syntax not discussed here, but you can build a module for manipulating sets of integers like this:
```
module S = Set.Make (struct type t = int let compare = compare end)
```

This new module S provides, amongst others, a type t for sets, and add, elements, mem, empty, and cardinal functions, whose definitions you can find in the OCaml manual. Use these functions to build a set module with a similar interface to ours. Comment on its speed for our examples.
4. We can save memory in the definition of Red-Black trees by having two different Br nodes, one for Red and one for Black, instead of storing the colour. Implement this. How much memory is saved? How much extra complexity is there in the source code?

Chapter 12

Playing Games

The childhood game of Noughts and Crosses is a combinatorial problem of a large but manageable size. Let us review the rules, and then see if we can build the game tree (that is, a structure describing all possible games), and draw some statistics from it.

A 3-by-3 grid is constructed. Two players (O and X) take turns, beginning with O, to place their piece in an empty space. The game is won if or when a player forms three pieces in a row, column, or diagonally. The game is drawn if the board is full and no such pattern has been formed. For example, in this board, player O has won, building a diagonal:

	X	O
X	O	X
O	X	O

Let us consider the shape of the game tree. Clearly, at the top level, it will branch nine ways, since O can be placed in any square. Then eight ways, seven ways and so on. Once we reach the fifth level, some of the games have been won (since three pieces from player O may form a line), and so the number of branches may be reduced. The tree must end after nine levels, since the board must at least be full, even if no-one has won. A fragment of the game tree is shown in Figure 12.1. Let us begin to construct the program. We will need a type to represent X, O and the empty square:

```
type turn = 0 | X | E
```

It would be natural to use a nine-tuple, since the board is of a fixed size. Then, though, we lose the ability to use the standard list-processing functions such as List.map over the boards. So, at the cost of a little inelegance, we will use a list of length nine instead - in other words a turn list.

We need to terminate the tree when X has won, O has won, or the board is full. Thus we will need to check all the rows, columns, and diagonals. We do not want to replicate the logic several times or build a huge pattern match, so it is easiest to write a function which takes a list of nine booleans and just checks for lines of true. We can then use List. map on the board itself to build these intermediate lists of booleans.

Figure 12.1

```
won : bool list }->\mathrm{ bool
let won [a; b; c; d; e; f; g; h; i] =
    a && b && c || d && e && f || g && h h& i || a && d && g ||
    b && e && h || c && f && i || a && e && i || c && e && g
```

We can number the positions in our board:

1	2	3
4	5	6
7	8	9

Now, we can use functions from the List module to write a function to return the numbers of the positions which are currently empty:

```
empty : turn list }->\mathrm{ bool
let empty b =
    List.map snd
        (List.filter (fun (t, -) -> t = E)
        (List.combine b [1; 2; 3; 4; 5; 6; 7; 8; 9]))
```

This works by building the list of tuples $[(X, 1) ;(E, 2) ;(E, 3) \ldots(0,9)]$, filtering out any which are not empty, and extracting the list of empty positions [2, 3 \ldots]. It is also simple to write a function which, given a board like [E; E; E; E; X; E; 0; E; E], a turn like 0 and a number such as 8, will fill in the correct slot in the board to produce $[\mathrm{E}$; $\mathrm{E} ; \mathrm{E} ; \mathrm{E} ; \mathrm{X} ; \mathrm{E} ; 0 ; \mathrm{X} ; \mathrm{E}$]. The take and drop functions from our Util module (described on page xiii) are ideal:

```
replace : turn }->\mathrm{ turn list }->\mathrm{ int }->\mathrm{ turn list
let replace turn board p =
    Util.take board (p - 1) @ [turn] @ Util.drop board p
```

One more simple function is required before we can write the main tree-building function, and that is to change whose turn it is:

```
flip_turn : turn -> turn
let flip_turn t =
    match t with 0 -> X | X -> 0
```

What should the type of the game tree be? Each node needs a list of turn elements representing the board, and a list of zero or more trees representing the game resulting from each possible move. Since the list can have zero elements, we need no separate leaf constructor:

```
type tree = Move of turn list * tree list
```

Now we may construct the main function. Our job is to build, given a turn (X or O) and the current board, the tree starting at that board. If the board has been won by either player, the list of next nodes is empty, and the recursion stops. If not, we calculate the empty positions, build a new board with each empty position filled in with the current turn, and then map next_moves over each of those.

```
next_moves : turn }->\mathrm{ turn list }->\mathrm{ tree
let rec next_moves turn board =
    let next =
        if
            won (List.map (( = ) 0) board) ||
            won (List.map (( = ) X) board)
        then
            []
        else
            List.map
                (next_moves (flip_turn turn))
                (List.map (replace turn board) (empty board))
    in
        Move (board, next)
```

Note that the recursion stops when a board is full (drawn) because empty returns the empty list in this case. Now we can build the game tree itself, which might take a second or so:

```
game_tree : tree
let game_tree =
    next_moves O [E; E; E; E; E; E; E; E; E]
```

This results in the tree shown below.

```
val game_tree : tree =
    Move ([E; E; E; E; E; E; E; E; E],
        [Move ([O; E; E; E; E; E; E; E; E],
            [Move ([O; X; E; E; E; E; E; E; E],
                    [Move ([O; X; O; E; E; E; E; E; E],
                    [Move ([O; X; O; X; E; E; E; E; E],
                    [Move ([O; X; O; X; O; E; E; E; E],
                                [Move ([O; X; O; X; O; X; E; E; E],
                        [Move ([O; X; 0; X; 0; X; 0; E; E], []);
                        Move ([O; X; O; X; O; X; E; 0; E],
                        [Move ([O; X; 0; X; O; X; X; 0;
                            [Move ([0; X; 0; X; 0; X; X; 0; 0], [])]);
                                    Move ([0; X; O; X; O; X; E; 0; X],
                            [Move ([0; X; 0; X; 0; X; 0; 0; X], [])])]);
                            Move ([O; X; O; X; O; X; E; E; 0], [])]);
                                Move ([O; X; O; X; O; E; X; E; E],
                            [Move ([O; X; 0; X; 0; 0; X; E; E],
                                    [Move ([O; X; O; X; 0; O; X; X; E],
                            [Move ([O; X; O; X; 0; 0; X; X; 0], [])]);
                                    Move ([O; X; O; X; 0; O; X; E; X],
                            [Move ([0; X; 0; X; 0; 0; X; 0; X], [])])]);
                            Move ([O; X; O; X; O; E; X; O; E],
                                    [Move ([O; X; O; X; O; X; X; O; E],
                            [Move ([0; X; 0; X; 0; X; X; 0; 0], [])]);
                            Move ([O; X; O; X; O; E; X; O; X],
                            [Move ([0; X; O; X; O; O; X; 0; X], [])])]);
                            ...]);
                            ...]);
                                ...]);
                            ...]);
                            ...]);
            ...]);
            ...])
```

You can see the first ending position in this game tree is $[0 ; X ; 0 ; X ; 0 ; X ; 0 ; E ; E]$. You can also see several drawn games. We can now use this game tree to calculate how many games are won by a given player:

```
num_wins : term }->\mathrm{ tree }->\mathrm{ int
let rec num_wins turn (Move (b, bs)) =
    (if won (List.map (( = ) turn) b) then 1 else 0) +
    List.fold_left ( + ) 0 (List.map (num_wins turn) bs)
```

This tells us, reasonably quickly, that O wins 131184 games. The questions at the end of this chapter ask you to work out more of these numbers. Here is the full code in one place:

```
type turn = 0 | X | E
let won [a; b; c; d; e; f; g; h; i] =
    a && b && c || d && e && f || g && h && i || a && d && g ||
    b && e && h || c && f && i || a && e && i || c && e && g
let replace turn board p =
    Util.take board (p - 1) @ [turn] @ Util.drop board p
let flip_turn t =
    match t with 0 -> X | X -> 0
let empty b =
    List.map snd
        (List.filter (fun (t, _) -> t = E)
            (List.combine b [1; 2; 3; 4; 5; 6; 7; 8; 9]))
type tree = Move of turn list * tree list
let rec next_moves turn board =
    let next =
        if
            won (List.map (( = ) 0) board) ||
            won (List.map (( = ) X) board)
        then
            []
        else
            List.map
                (next_moves (flip_turn turn))
                (List.map (replace turn board) (empty board))
    in
        Move (board, next)
let game_tree =
    next_moves 0 [E; E; E; E; E; E; E; E; E]
```

In the questions, you will extract the rest of the statistics from the tree, and build some alternative representations.

Questions

1. In how many cases does X win? How many possible different games are there? How many end in a draw?
2. Build a lazy version of our game tree, where nodes are only created when explored. Now write a function to work out how many times O and X win or the game is drawn if O goes first and picks the centre slot. What about if O picks a corner? The middle of a side?
3. Another way to check if someone has won is to rearrange the board numbers into a so-called magic square, where each row, column or diagonal sums to 15 :

8	1	6
3	5	7
4	9	2

Now, a player has won if they have any three positions summing to 15 . Re-implement our game tree program using this alternative representation.

Generating PDF Documents

an extended example

Chapter 13

Representing Documents

In this chapter we will define a data type for representing a PDF document. PDF is a structured format for describing a wide variety of graphical and textual data. The PDF file format itself is large and complex, but we will introduce only the parts required for our examples. It is relatively easy to write PDF files but rather harder to read them, so we will concentrate on creating PDF data structures in memory, and then writing them to valid files. Here is an example PDF, as it might be displayed in a PDF viewer:

Here is the corresponding code, which you would see if you opened the PDF file in a plain text editor:
\%PDF-1.1
10 obj
<</Type /Page
/Parent 30 R
/Resources

```
<</Font
    <</F0
        <</Type /Font /Subtype /Typel /BaseFont /Times-Italic>>>>>>
    /MediaBox [0 0 595.275590551 841.88976378]
    /Rotate 0 /Contents [4 0 R] >>
endobj
2 0 obj
<</Type /Catalog /Pages 3 0 R>>
endobj
3 0 obj
<</Type /Pages /Kids [1 0 R] /Count l>>
endobj
4 0 obj
<</Length 53>>
stream
10 0 1 50 770 cm BT /F0 36 Tf (Hello, World!) Tj ET
endstream
endobj
xref
0 5
0000000000 65535 f
0000000015 00000 n
0000000200 00000 n
0000000245 00000 n
0000000296 00000 n
trailer
<</Size 5 /Root 2 0 R>>
startxref
397
%%EOF
```

Rather complicated, as we can see. Our first job is to define a pleasant OCaml data type for PDF documents, which can then be flattened to the format above when written to a file.

The main body of a PDF file is a set of numbered objects - there are four in the example above, from 1 0 obj to 40 obj. Each one contains some structured data, such as the dictionary <</Type /Pages /Kids [1 0 R] /Count l>> which associates the keys/Type, /Kids, and/Count to the name/Pages, the array [1 0 R], and the integer 1 respectively. Before and after the main body is some ancillary data, most of which we do not need to hold in our data structure - it is generated upon writing. Here are all the kinds of data we will be using:

- Booleans, like true and false
- Integers, such as $4,256,-1$
- Floating-point numbers such as 1.585
- Strings, like (a string) which are sequences of characters within parentheses
- Names, like /Name

- Dictionaries, which are unordered collections of key-value pairs, where the keys are names. For example, <</One 1 /Two 2 /Three 3>>.
- Streams, like object 4 in the example above, which are arbitrary sequences of bytes.
- Indirect references, like 40 R which point to another object by its number (here, object 4).

Here is an OCaml data type to hold such data:

```
type pdfobject =
    Boolean of bool
| Integer of int
| Float of float
| String of string
| Name of string
| Array of pdfobject list
| Dictionary of (string * pdfobject) list
| Stream of pdfobject * string
| Indirect of int
```

Note that it is recursive, mirroring the structure of the data. For example, object 3 in the example above, that is $\ll /$ Type /Pages /Kids [1 0 R] /Count $1 \gg$, will be represented as:

```
Dictionary
    [("/Type", Name "/Pages"); ("/Kids", Array [Indirect 1]); ("/Count", Integer 1)]
```

Now, we need a type to represent the whole document, which contains a list of these objects, the PDF version number (1.1 in the example above), and the trailer dictionary (<</Size $5 /$ Root 20 R>> above). Everything else is generated upon writing. It is traditional to name the main type of a module t :

```
type t =
    {version : int * int;
    objects : (int * pdfobject) list;
    trailer : pdfobject}
```

We put these two types into pdf.ml and pdf.mli. Here is how we might build an instance of this data type representing our example PDF:

```
let objects =
    [(1,
        Pdf.Dictionary
            [("/Type", Pdf.Name "/Page");
            ("/Parent", Pdf.Indirect 3);
            ("/Resources",
                Pdf.Dictionary
                    [("/Font",
                        Pdf.Dictionary
                                [("/F0",
                                Pdf.Dictionary
                            [("/Type", Pdf.Name "/Font");
                            ("/Subtype", Pdf.Name "/Type1");
                            ("/BaseFont", Pdf.Name "/Times-Italic")])])]);
            ("/MediaBox",
                Pdf.Array
                        [Pdf.Float 0.; Pdf.Float 0.;
```

```
                    Pdf.Float 595.275590551; Pdf.Float 841.88976378]);
        ("/Rotate", Pdf.Integer 0);
        ("/Contents", Pdf.Array [Pdf.Indirect 4])]);
    (2,
    Pdf.Dictionary
        [("/Type", Pdf.Name "/Catalog");
            ("/Pages", Pdf.Indirect 3)]);
(3)
    Pdf.Dictionary
        [("/Type", Pdf.Name "/Pages");
            ("/Kids", Pdf.Array [Pdf.Indirect 1]);
            ("/Count", Pdf.Integer 1)]);
(4,
    Pdf.Stream
        (Pdf.Dictionary [("/Length", Pdf.Integer 53)],
            "1 0 0 1 50 770 cm BT /F0 36 Tf (Hello, World!) Tj ET"))]
let hello =
    {Pdf.version = (1, 1);
        Pdf.objects = objects;
        Pdf.trailer =
        Pdf.Dictionary
        [("/Size", Pdf.Integer 5);
            ("/Root", Pdf.Indirect 2)]}
```

The advantage of using this data structure as opposed to generating the PDF file directly is that it may be programmatically manipulated with ease, using pattern matching and other standard OCaml techniques. Note that the content of the page itself "100150770 cm BT /F0 36 Tf (Hello, World!) Tj ET" remains a plain string. We shall look at this separate language soon.

In the next three chapters, we will learn how to write this representation to a file, and add our own text and graphics to the page.

Questions

1. Draw the graph of the relationships, via indirect references such as 30 R , of the objects $1,2,3,4$ and the trailer dictionary.
2. Represent the following PDF objects using our data type:
```
/Name
(Quartz Crystal)
<</Type /ObjStm /N 100 /First 807 /Length 1836 /Filter /FlateDecode>>
[1 2 1.5 (black)]
[1 2 0 R]
```

3. PDF files can contain arbitrary objects, which will be ignored by a PDF reader if they are not understood. Design a way of representing items of the following type using one or more PDF objects:
```
type tree = Lf | Br of tree * int * tree
```

4. Write a function of type pdfobject \rightarrow pdfobject which, given an object, replaces the value of any dictionary entry with key /Rotate to 90.

Chapter 14

Writing Documents

We have built a representation for PDF documents to be held in memory, and defined an example document. Now, we must build functions to write this to file. Recall our example file from the last chapter:

```
%PDF-1.1
1 0 obj
<</Type /Page
    /Parent 3 0 R
    /Resources
        <</Font
        <</F0
            <</Type /Font /Subtype /Type1 /BaseFont /Times-Italic>>>>>>>
        /MediaBox [0 0 595.275590551 841.88976378]
        /Rotate 0 /Contents [4 0 R] >>
endobj
2 0 obj
<</Type /Catalog /Pages 3 0 R>>
endobj
3 0 obj
<</Type /Pages /Kids [1 0 R] /Count 1>>
endobj
4 0 obj
<</Length 53>>
stream
10 0 1 50 770 cm BT /F0 36 Tf (Hello, World!) Tj ET
endstream
endobj
xref
0 5
0000000000 65535 f
0000000015 00000 n
0000000200 00000 n
0000000245 00000 n
0000000296 00000 n
trailer
<</Size 5 /Root 2 0 R>>
```


startxref

397
\%\%EOF

It consists, we remember, of a header, then some objects (here, four), and a trailer. We will need four functions:

1. The function string_of_pdfobject to make a string from a Pdf.pdfobject, for example making the string "<</Type /Pages /Kids [1 0 R] /Count l>>" from the pdfobject Dictionary [("/Type", Name "/Pages"); ("/Kids", Array [Indirect 1]); ("/Count", Integer 1)];
2. The function write_header to write the header (i.e. everything before the objects);
3. The function write_trailer to write the trailer (i.e. everything after the objects); and
4. The main function pdf_to_file which uses these three functions to write a Pdf.t to a file under the given file name.

The function string_of_pdfobject is best expressed as a set of mutually-recursive functions introduced with the let rec ... and ... construct. To give it as a single function is possible, but would be rather large, and so harder to read and edit. Let us present it piece-by-piece and then all at once.

First, the main part. Given an object we wish to produce its string, assuming that string_of_array, string_of_dictionary, and string_of_stream exist:

```
string_of_pdfobject : Pdf.pdfobject }->\mathrm{ string
let rec string_of_pdfobject obj =
    match obj with
        Pdf.Boolean b -> string_of_bool b
        | Pdf.Integer i -> string_of_int i
    | Pdf.Float f -> string_of_float f
    | Pdf.String s -> "(" ^ s ^ ")"
    | Pdf.Name n -> n
    | Pdf.Array a -> string_of_array a
    | Pdf.Dictionary d -> string_of_dictionary d
    | Pdf.Stream (dict, data) -> string_of_stream dict data
    | Pdf.Indirect i -> Printf.sprintf "%i 0 R" i
```

The cases are all simple, except for the ones we have put aside to be implemented separately. Strings must be put between parentheses, indirect references are printed as 20 Retc.

To build a string from an Array, we need to start with an open square bracket, add the string for each Pdf.pdfobject in the array (which may be arbitrarily complex, of course), and put spaces between them. Then we end with a close square bracket:

```
string_of_array : Pdf.pdfobject }->\mathrm{ string
let rec string_of_array a =
    let b = Buffer.create 100 in
        Buffer.add_string b "[";
        List.iter
            (fun s ->
                Buffer.add_char b ' ';
                Buffer.add_string b (string_of_pdfobject s))
            a;
        Buffer.add_string b " ]";
        Buffer.contents b
```

It is natural to use the Buffer module from the Standard Library to collect these strings together. It is also more efficient than using string concatenation. Notice we do not add an initial space after the square bracket, but do before the closing square bracket, for symmetry. The string_of_dictionary function is somewhat similar:

```
string_of_dictionary : Pdf.pdfobject }->\mathrm{ string
let rec string_of_dictionary d =
    let b = Buffer.create 100 in
        Buffer.add_string b "<<";
        List.iter
            (fun (k, v) ->
                Buffer.add_char b ' ';
                Buffer.add_string b k;
                Buffer.add_char b ' ';
                Buffer.add_string b (string_of_pdfobject v))
            d;
        Buffer.add_string b " >>";
        Buffer.contents b
```

Now for string_of_stream. A stream in PDF is written like this:
stream dictionary
stream
stream data
endstream

This is simple with the Buffer module too:

```
string_of_stream : Pdf.pdfobject }->\mathrm{ string }->\mathrm{ string
let rec string_of_stream dict data =
    let b = Buffer.create 100 in
        List.iter (Buffer.add_string b)
            [string_of_pdfobject dict; "\nstream\n"; data; "\nendstream"];
        Buffer.contents b
```

The code for these four functions is collected together in Figure 14.1 Now that we can build a string from any Pdf.pdfobject, we can proceed to build the write_header, write_trailer, and write_objects functions, so that we have everything we need for the final pdf_to_file function.

The PDF header consists of $\% \%$ PDF - $m . n$ where m and n are the major and minor version numbers. This is easy to build with Printf.sprintf:

```
write_header : out_channel }->\mathrm{ Pdf.t }->\mathrm{ unit
let write_header o {Pdf.version = (major, minor)} =
    output_string o
        (Printf.sprintf "%%PDF-%i.%i\n" major minor)
```

The write_objects function, which is given a list of (int \times Pdf.pdfobject) pairs, sorts the objects by their number, and then outputs each object using string_of_pdfobject. For example, the pair

(3,

Dictionary
[("/Type", Name "/Pages"); ("/Kids", Array [Indirect 1]); ("/Count", Integer 1)])
will be written to file like this:

```
3 0 obj
<< /Type /Pages /Kids [1 0 R] /Count 1 >>
endobj
```

The function collects and returns a list of the byte offsets of the objects written, since this will be needed to write the trailer section, which we shall describe in a moment.

```
write_objects : out_channel }->\mathrm{ (int }\times\mathrm{ Pdf.pdfobject) }->\mathrm{ int list
let write_objects o objs =
    let offsets = ref [] in
        List.iter
            (fun (objnum, obj) ->
                offsets := pos_out o :: !offsets;
                output_string o (Printf.sprintf "%i 0 obj\n" objnum);
                output_string o (string_of_pdfobject obj);
                output_string o "\nendobj\n")
            (List.sort objs);
        List.rev !offsets
```

```
string_of_array : Pdf.pdfobject list }->\mathrm{ string
string_of_dictionary : (string }\times\mathrm{ Pdf.pdfobject) list }->\mathrm{ string
string_of_stream : Pdf.pdfobject }->\mathrm{ string }->\mathrm{ string
string_of_pdfobject : Pdf.pdfobject }->\mathrm{ string
let rec string_of_array a =
    let b = Buffer.create 100 in
        Buffer.add_string b "[";
        List.iter
            (fun s ->
                Buffer.add_char b ' ';
                Buffer.add_string b (string_of_pdfobject s))
            a;
        Buffer.add_string b " ]";
        Buffer.contents b
and string_of_dictionary d =
    let b = Buffer.create 100 in
        Buffer.add_string b "<<";
        List.iter
            (fun (k, v) ->
                        Buffer.add_char b ' ';
                        Buffer.add_string b k;
                        Buffer.add_char b ' ';
                        Buffer.add_string b (string_of_pdfobject v))
            d;
        Buffer.add_string b " >>";
        Buffer.contents b
and string_of_stream dict data =
    let b = Buffer.create 100 in
        List.iter (Buffer.add_string b)
            [string_of_pdfobject dict; "\nstream\n"; data; "\nendstream"];
        Buffer.contents b
and string_of_pdfobject obj =
    match obj with
        Pdf.Boolean b -> string_of_bool b
        Pdf.Integer i -> string_of_int i
        Pdf.Float f -> string_of_float f
        Pdf.String s -> "(" ^ s ^ ")"
        Pdf.Name n -> n
        Pdf.Array a -> string_of_array a
        Pdf.Dictionary d -> string_of_dictionary d
        Pdf.Stream (dict, data) -> string_of_stream dict data
        Pdf.Indirect i -> Printf.sprintf "%i 0 R" i
```

Figure 14.1: Our mutually recursive functions to build a string from a Pdf.pdfobject

Now, we can write the trailer. That is to say, this section:

```
xref
0 5
0000000000 65535 f
0000000015 00000 n
0000000230 00000 n
0000000279 00000 n
0000000338 00000 n
trailer
<< /Size 5 /Root 2 0 R >>
startxref
440
%%EOF
```

This consists largely of a list of the byte offsets of the four objects in the file $(15,230,279,338)$, the trailer dictionary, and so on. It is not necessary to understand it in detail. This is the first section which would be read by a PDF reader, to find the actual objects in the file.

```
write_trailer : out_channel }->\mathrm{ Pdf.t }->\mathrm{ int list }->\mathrm{ unit
let write_trailer o pdf offsets =
    let startxref = pos_out o in
        output_string o "xref\n";
        output_string o
            (Printf.sprintf "0 %i\n" (List.length pdf.Pdf.objects + 1));
        output_string o "0000000000 65535 f \n";
        List.iter
            (fun offset ->
            output_string o (Printf.sprintf "%010i 00000 n \n" offset))
        offsets;
    output_string o "trailer\n";
    output_string o (string_of_pdfobject pdf.Pdf.trailer);
    output_string o "\nstartxref\n";
    output_string o (string_of_int startxref);
    output_string o "\n%%EOF"
```

Now the main function is simple. We open the file, write the header, objects, and trailer, and close the file. In the event of an exception, we close the file to clean up, and re-raise it.

```
pdf_to_file : Pdf.t }->\mathrm{ string }->\mathrm{ unit
let pdf_to_file pdf filename =
    let output = open_out_bin filename in
        try
            write_header output pdf;
            let offsets = write_objects output pdf.Pdf.objects in
                write_trailer output pdf offsets;
                close_out output
        with
            e -> close_out output; raise e
```

This code goes into pdfwrite.ml. The interface pdfwrite.mli is very simple. We expose only pdf_to_file:

```
val pdf_to_file : Pdf.t -> string -> unit
```

Here is the output of our program on the example Pdfhello.hello:
\%PDF-1.1
10 obj
<< /Type /Page /Parent 30 R /Resources <</Font << /F0 << /Type /Font /Subtype / Type1 /BaseFont /Times-Italic >\gg\gg> /MediaBox [0. 0. 595.275590551 841.88976378] /Rotate 0 /Contents [40 R] >>
endobj
20 obj
<</Type /Catalog /Pages 30 R >>
endobj
30 obj
<</Type /Pages /Kids [10 R] /Count 1 >>
endobj
40 obj
<</Length 53 >>
stream
100150770 cm BT /F0 36 Tf (Hello, World!) Tj ET
endstream
endobj
xref
05
000000000065535 f
000000001500000 n
$000000023000000 n$
000000027900000 n
000000033800000 n
trailer
<</Size 5 /Root 20 R >>
startxref

This loads correctly into a PDF viewer. Notice that some of the spacing is different from the specimen PDF we had at the top of the chapter - this does not matter. Now we can move on to putting more interesting content on the page of our PDF documents.

Questions

1. Modify the code so that arrays and dictionaries do not have spaces at either end of them (these spaces are not required). For example, we should see [20R] rather than [20 R].
2. Build an example PDF with three pages. This will have three entries in its /Kids array, and three page objects. The page contents may be shared by the three pages if desired. You will need to number the additional objects carefully.
3. Modify the program to use our byte-by-byte compression algorithm from Chapter 6 to compress the content stream in the "Hello, World" program. You will need to fix the /Length and add /Filter /RunLengthDecode to the stream dictionary. Now modify the program to use our bit-bybit compression algorithm from the same chapter with /Filter /CCITTFaxDecode. You will need to add the following entry to the stream dictionary, in addition to altering the /Filter entry:
```
("/DecodeParms",
    Pdf.Dictionary
        [("/Rows", Pdf.Integer 1);
            ("/Columns", Pdf.Integer (52 * 8));
            ("/BlackIs1", Pdf.Boolean true);
            ("/EndOfBlock", Pdf.Boolean false)])
```

The number 52 is the number of bytes of data in our example.

Chapter 15

Pretty Pictures

We have not yet explained the structure of the code which put "Hello, World!" on the page. Here it is again:

```
1 0 0 1 50 770 cm BT /F0 36 Tf (Hello, World!) Tj ET
```

It is a list of operator-operand sequences. Each sequence consists of zero or more operands and one operator. The sequences in our example are:

Operands	Operator
1000150770	cm
	BT
/F0 36	Tf
(Hello, World!)	Tj
	ET

In this chapter we will introduce a few simple operators for drawing lines and filling shapes (in the next chapter we discuss adding text and build a basic typesetter). Here are the operators we will be using to start with:

Operands	Operator	Description
$x y$	m	move to point
$x y$	l	line to point
	h	close path
	S	stroke path
	f	fill path
$0 \ldots 1$	g	set fill grey
$0 \ldots 1$	G	set stroke grey

Here is a data type, which forms part of the new Pdfpage module, which encodes these operators. We will
extend it with new operators when required.

```
type t =
    Move of float * float
    Line of float * float
    Close
    Stroke
    Fill
    FillColour of float
    StrokeColour of float
```

In order to put these into the PDF document, we will need to convert each set of operands and operator to a string. This is simple:

```
string_of_op : Pdfpage.t }->\mathrm{ string
let string_of_op op =
    match op with
        Move (x, y) -> Printf.sprintf "%f %f m" x y
    | Line (x, y) -> Printf.sprintf "%f %f l" x y
    | Close -> "h"
    | Stroke -> "S"
    | Fill -> "f"
    | FillColour g -> Printf.sprintf "%f g" g
    | StrokeColour g -> Printf.sprintf "%f G" g
```

Now we can put them together into a single string by using functions from the Buffer module, putting a space character after each.

```
string_of_ops : Pdfpage.t list }->\mathrm{ string
let string_of_ops ops =
    let b = Buffer.create 1000 in
        List.iter
            (fun op ->
                Buffer.add_string b (string_of_op op);
                Buffer.add_char b ' ')
            ops;
        Buffer.contents b
```

Here is a very simple example - we move to $(100,100)$, make three lines and close the path. Then we use the Fill operator. Coordinates in PDF have the origin at the bottom left of the page.

```
box : Pdfpage.t list
let box =
    [Pdfpage.Move (100., 100.);
        Pdfpage.Line (100., 200.);
    Pdfpage.Line (200., 200.);
    Pdfpage.Line (200., 100.);
    Pdfpage.Close;
    Pdfpage.Fill]
```

Our page looks like this:

Not all sequences of operators are valid, and our data type makes no checks to ensure our list is correct. This could be solved by building a higher-level data type which would then be flattened down to a list of Pdfpage.t elements. In our examples, and in the questions at the end of the chapter, it is sufficient to stick to the pattern above - one Move, one or more Lines, a Close (if filling), and a Fill or Stroke.

As an example, we will build a function to make a single line, and use it to build a function which, given the page dimensions, draws a page of graph paper. First, a function to build a single line from (x, y) to $(x 1, y 1)$:

```
mkline : float }->\mathrm{ float }->\mathrm{ float }->\mathrm{ float }->\mathrm{ Pdfpage.t list
let mkline x y xl yl =
    [Pdfpage.Move (x, y);
    Pdfpage.Line (x1, y1);
    Pdfpage.Stroke]
```

Now, a function to return a set of equally spaced floating-point values from $0 \ldots n$ given a step:

```
steps : float }->\mathrm{ float }->\mathrm{ float list
let steps n step =
    let mul = ref 0
    and vals = ref [] in
        while float !mul *. step <= n do
            vals := float !mul *. step :: !vals;
            mul := !mul + 1
        done;
        List.rev !vals
```

Note that we have been careful to avoid repeated addition of floating-point values - this can accumulate errors. We can build all the lines:

```
graph_string : float }->\mathrm{ float }->\mathrm{ float }->\mathrm{ string
let graph_string w h step =
    let horizontals =
        List.map (fun n -> mkline 0. n w n) (steps h step)
    and verticals =
        List.map (fun n -> mkline n 0. n h) (steps w step)
    in
        Pdfpage.string_of_ops (List.concat (horizontals @ verticals))
```

Here is the result of graph_string 595.28 841.89 10. on a page of A4 paper:

Questions

1. Write a function which, given a centre point and radius, returns a list of Move, Line, and Close elements which represent a circle. Use a number of lines appropriate to the size of the circle.
2. Use the function from the previous question to write a program which outputs a page covered in pseudo-random sized and filled grey circles.
3. The sequences red green blue rg and red green blue RG are the colour analogues to the sequences grey g and grey G. Add them to our data type, and redo the circles program to use colour.
4. The sequence width w sets the line width. Add this to our data type and use it to draw a single large unfilled circle over the centre of the page.
5. The operator W in place of a stroke or paint operator is used to set up a clipping path. Add this to our data type. Turn your big circle into a clipping path for the random circles pattern, so you now have circles within a circle.

Chapter 16

Adding Text

In this chapter, we will develop a very simple typesetter. Given a string representing the page content, it will split it into words, break them across lines and place them on the page. In the questions at the end of the chapter, the typesetter will be extended to use full justification, to indent paragraphs, and to produce multi-page documents.

To begin with, some of our numbers (lines per page, margins etc.) will be hard coded - we will then factor them out as we generalize the code. But let us define names for the page width and height for an A4 page first, to prevent excessive duplication:

```
page_width : float
page_height : float
let page_width = 595.28
let page_height = 841.89
```

We first need to split our text into words. For our purposes, a word is anything separated from another word by one or more spaces. To preserve the paragraph breaks, the new line character $\backslash n$ will be considered a word also. So, for example, the string "He stopped. \n Looking around, he saw he was enveloped in smoke." would be split into the list of words ["He"; "stopped."; "\n"; "Looking"; "around,"; "he"; "saw"; "he"; "was"; "enveloped"; "in"; "smoke."].

The function consume_spaces, given an input, places the input position at the first non-space character at or after its current position. If the end of the input is reached, no exception is raised.

```
consume_spaces : Input.input }->\mathrm{ unit
let consume_spaces i =
    try
        while true do
            match i.Input.input_char () with
                ' ' -> ()
            | x -> rewind i; raise End_of_file
        done;
            assert false
    with
        End_of_file -> ()
```

Now we can write a function to read a word. First, we consume any spaces present. Then, we repeatedly read characters into a buffer until either a space occurs, a newline occurs, or we reach the end of a file. If a space occurs, we have finished reading the word. If a newline occurs, we have finished also, but we rewind so the newline will be picked up as its own word next time. If we reach the end of the input, we return the contents of the buffer so far.

```
read_word : Input.input }->\mathrm{ string
let read_word i =
    consume_spaces i; discard any initial space
    let b = Buffer.create 20 in
        try
            while true do
                match i.Input.input_char () with
                    '\n' -> newline
                        if Buffer.length b = 0
                        then Buffer.add_char b '\n'
                        else rewind i;
                raise End_of_file
            | ' ' -> raise End_of_file space
            | c -> Buffer.add_char b c any other character
            done;
            assert false
        with
            End_of_file ->
                if Buffer.length b = 0 if we have read nothing...
                then raise End_of_file ...we have no word, but are at the end....
                else Buffer.contents b ...otherwise we have a final word
```

Now it is simple to collect all the words in an input by repeatedly calling read_word, and accumulating the result is a list.

```
words_of_input : Input.input }->\mathrm{ string list
let words_of_input i =
    let words = ref [] in
        try
            while true do words := read_word i :: !words done;
            assert false
        with
            End_of_file -> List.rev !words
```

We shall consider the opening paragraphs of Kafka's "Metamorphosis":

One morning, when Gregor Samsa woke from troubled dreams, he found himself transformed in his bed into a horrible vermin. He lay on his armour-like back, and if he lifted his head a little he could see his brown belly, slightly domed and divided by arches into stiff sections. The bedding was hardly able to cover it and seemed ready to slide off any moment. His many legs, pitifully thin compared with the size of the rest of him, waved about helplessly as he looked.
"What's happened to me?" he thought. It wasn't a dream. His room, a proper human room although a little too small, lay peacefully between its four familiar walls. A collection of textile samples lay spread out on the table - Samsa was a travelling salesman - and above it there hung a picture that he had recently cut out of an illustrated magazine and housed in a nice, gilded frame. It showed a lady fitted out with a fur hat and fur boa who sat upright, raising a heavy fur muff that covered the whole of her lower arm towards the viewer.

So, for our text, we get:

```
["One"; "morning,"; "when"; "Gregor"; "Samsa"; "woke"; "from"; "troubled";
    "dreams,"; "he"; "found"; "himself"; "transformed"; "in"; "his"; "bed";
    "into"; "a"; "horrible"; "vermin."; "He"; "lay"; "on"; "his"; "armour-like";
    "back,"; "and"; "if"; "he"; "lifted"; "his"; "head"; "a"; "little"; "he";
    "could"; "see"; "his"; "brown"; "belly,"; "slightly"; "domed"; "and";
    "divided"; "by"; "arches"; "into"; "stiff"; "sections."; "The"; "bedding";
    "was"; "hardly"; "able"; "to"; "cover"; "it"; "and"; "seemed"; "ready";
    "to"; "slide"; "off"; "any"; "moment."; "His"; "many"; "legs,"; "pitifully";
    "thin"; "compared"; "with"; "the"; "size"; "of"; "the"; "rest"; "of";
    "him,"; "waved"; "about"; "helplessly"; "as"; "he"; "looked."; "\n";
    "\"What's"; "happened"; "to"; "me?\""; "he"; "thought."; "It"; ...]
```

Notice the newline as a word on its own. Our next task is to break this sequence of words into lines of a given width. We will have two kinds of line. A Full line is one we had to break at the end of. A Partial line is one which ended because of a newline or end-of-input. In our first example, we will not need to distinguish these two, but when it comes to justification and more advanced examples, it will be invaluable. The type is trivial:

```
type line =
    Full of string
| Partial of string
```

Now the line breaking function. The function lines takes a maximum width in characters, and a list of words, and returns a line list. There are three cases in the lines_inner function:

1. If we have reached the end of the list of words, return the list of collected lines, adding one for anything in the current line buffer, if it is non-empty.
2. If we have a newline word, create a Partial line from the current buffer (even if it is empty - this allows blank lines to be inserted using multiple newlines), and carry on.
3. If we have any other word, see how long it and the buffer are. If the word is longer than the whole line and we are at the beginning of that line, we output an over-sized line (an alternative would be to wrap or hyphenate the word in some way). Otherwise, we see if the current word will fit. If it will, we add it and a space to the buffer and carry on. It not, we output a Full line, and start with the word on the next line.
```
lines_inner : line list }->\mathrm{ Buffer.t }->\mathrm{ int }->\mathrm{ string list }->\mathrm{ line list
lines : int }->\mathrm{ string list }->\mathrm{ line list
let rec lines_inner ls b width words =
    match words with
        [] -> case 1
        if Buffer.length b > 0 then
            List.rev (Partial (Buffer.contents b) :: ls)
        else
            List.rev ls
    | "\n"::t -> case 2
            lines_inner
                    (Partial (Buffer.contents b) :: ls)
            (Buffer.create width) width t
        | word::t ->
            case 3
            if Buffer.length b = 0 && String.length word > width then
            lines_inner (Full word :: ls) (Buffer.create width) width t
            else if String.length word + Buffer.length b < width then
            begin
                Buffer.add_string b word;
                Buffer.add_char b ' ';
                lines_inner ls b width t
            end
            else
                lines_inner
                            (Full (Buffer.contents b) :: ls)
                            (Buffer.create width) width (word :: t)
let lines width words =
    lines_inner [] (Buffer.create width) width words
```

For example, here is our text split into lines of no more than twenty characters each:

```
[Text.Full "One morning, when "; Text.Full "Samsa woke from ";
Text.Full "dreams, he found "; Text.Full "transformed in his ";
Text.Full "into a horrible "; Text.Full "He lay on his ";
Text.Full "back, and if he "; Text.Full "his head a little ";
Text.Full "could see his brown "; Text.Full "slightly domed and ";
Text.Full "by arches into "; Text.Full "sections. The ";
Text.Full "was hardly able to "; Text.Full "it and seemed ready ";
Text.Full "slide off any "; Text.Full "His many legs, ";
Text.Full "thin compared with "; Text.Full "size of the rest of ";
Text.Full "waved about "; Text.Partial "as he looked. ";
Text.Full "\"What's happened to "; Text.Full "he thought. It ";
Text.Full "a dream. His room, "; Text.Full "proper human room ";
Text.Full "a little too small, "; Text.Full "peacefully between "; ...]
```

Now we need to add appropriate text-showing operators to our Pdfpage module, and then produce a list of operators for showing a line, using it repeatedly to show the whole page. A text section in a PDF operator stream looks something like this:
BT 10014050 Tm /F0 12 Tf (The text) Tj ET
This contains the following operators and operands:

Operands	Operator	Description
-	BT	begin text section
10014050	Tm	move text position to (40, 50)
/F0 12	Tf	set font to 12pt /F0
(The Text)	Tj	show the text string "The Text"
-	ET	end text section

Here are the fragments added to the Pdfpage.t type...

```
| BeginText
| EndText
| SetTextPosition of float * float
| SetFontAndSize of string * float
| ShowText of string
```

... and the string_of_op function:

```
BeginText -> "BT"
| EndText -> "ET"
| SetTextPosition (x, y) -> Printf.sprintf "1 0 0 1 %f %f Tm" x y
| SetFontAndSize (font, size) -> Printf.sprintf "%s %f Tf" font size
| ShowText t -> Printf.sprintf "(%s) Tj" t
```

Consider Figure 16.1. The function typeset_line_at builds a single line at x position 20 and a given y coordinate. The function downfrom builds a list of y positions for a number of lines. The utility function clean_lines makes plain strings from a list of lines, and the function typeset_page puts it all together, generating a big list of Pdfpage.t operations. The resulting PDF is shown in Figure 16.2. The full code for this chapter is included in the online resources - it should be consulted before attempting the questions.

```
typeset_line_at : string }->\mathrm{ float }->\mathrm{ Pdfpage.t list
downfrom : float }->\mathrm{ float }->\mathrm{ int }->\mathrm{ int }->\mathrm{ float list
clean_lines : line list }->\mathrm{ string list
typeset_page : string }->\mathrm{ Pdfpage.t list
let typeset_line_at line y =
    [Pdfpage.BeginText;
        Pdfpage.SetTextPosition (20., y);
        Pdfpage.SetFontAndSize ("/F0", 12.0);
        Pdfpage.ShowText line;
        Pdfpage.EndText]
let rec downfrom step start length n =
    if length = 0 then [] else
        start -. (step *. float n) ::
            downfrom step start (length - 1) (n + 1)
let clean_lines =
    List.map (fun Full x -> x | Partial x -> x)
let typeset_page text =
    let words = words_of_input (Input.input_of_string text) in
        let ls = clean_lines (lines 76 words) in
            let positions =
            downfrom 14. (page_height -. 30.) (List.length ls) 0
        in
            List.concat (List.map2 typeset_line_at ls positions)
```

Figure 16.1

One morning, when Gregor Samsa woke from troubled dreams, he found himself in his bed into a horrible vermin. He lay on his armour-like back, and if lifted his head a little he could see his brown belly, slightly domed and by arches into stiff sections. The bedding was hardly able to cover it and ready to slide off any moment. His many legs, pitifully thin compared with size of the rest of him, waved about helplessly as he looked.
"What's happened to me?" he thought. It wasn't a dream. His room, a proper room although a little too small, lay peacefully between its four familiar A collection of textile samples lay spread out on the table - Samsa was a salesman - and above it there hung a picture that he had recently cut out an illustrated magazine and housed in a nice, gilded frame. It showed a fitted out with a fur hat and fur boa who sat upright, raising a heavy fur that covered the whole of her lower arm towards the viewer. Gregor then turned to look out the window at the dull weather. Drops of could be heard hitting the pane, which made him feel quite sad. "How about I sleep a little bit longer and forget all this nonsense", he thought, but was something he was unable to do because he was used to sleeping on his and in his present state couldn't get into that position. However hard he himself onto his right, he always rolled back to where he was. He must have it a hundred times, shut his eyes so that he wouldn't have to look at the legs, and only stopped when he began to feel a mild, dull pain there that had never felt before.
"Oh, God", he thought, "what a strenuous career it is that I've chosen! day in and day out. Doing business like this takes much more effort than your own business at home, and on top of that there's the curse of worries about making train connections, bad and irregular food, contact different people all the time so that you can never get to know anyone or friendly with them. It can all go to Hell!" He felt a slight itch up on his pushed himself slowly up on his back towards the headboard so that he could his head better; found where the itch was, and saw that it was covered with of little white spots which he didn't know what to make of; and when he to feel the place with one of his legs he drew it quickly back because as as he touched it he was overcome by a cold shudder.
He slid back into his former position. "Getting up early all the time", he "it makes you stupid. You've got to get enough sleep. Other travelling live a life of luxury. For instance, whenever I go back to the guest house the morning to copy out the contract, these gentlemen are always still there eating their breakfasts. I ought to just try that with my boss; I'd kicked out on the spot. But who knows, maybe that would be the best thing me. If I didn't have my parents to think about I'd have given in my notice long time ago, I'd have gone up to the boss and told him just what I think, him everything I would, let him know just what I feel. He'd fall right off desk! And it's a funny sort of business to be sitting up there at your talking down at your subordinates from up there, especially when you have go right up close because the boss is hard of hearing. Well, there's still hope; once $I^{\prime} v e ~ g o t ~ t h e ~ m o n e y ~ t o g e t h e r ~ t o ~ p a y ~ o f f ~ m y ~ p a r e n t s ' ~ d e b t ~ t o ~ h i m ~-~$ five or six years I suppose - that's definitely what I'll do. That's when make the big change. First of all though, I've got to get up, my train at five."

Questions

1. Factor out the font size, line height, margin height and automatically calculate the number of characters in a line (the number of characters in a line can be calculated by the formula $5 \mathrm{w} / 3 \mathrm{f}$ where w is the width of a line and f is the font size). The program should now work for any page size.
2. The first line of each paragraph (save for the first) should be indented by eight characters. Implement this.
3. Implement full justification. This gives a clean left and right margin except for the left margin of the first line in a paragraph and the right margin of the last line of a paragraph. This can be done by altering the spacing between characters and words. Of course, Partial lines should not be stretched.
4. Allow the program to generate multiple pages, should the length of the text demand it. This can be done by extending the /Kids entry in the PDF file, and producing multiple page objects.

Answers to Questions

Hints may be found on page 191

Chapter 1 (Unravelling "Fold")

1
This can be achieved by folding the subtraction operator over the deductions, with the starting accumulator set to the budget:

```
deduct : int }->\mathrm{ int list }->\mathrm{ int
let deduct budget expenses =
    List.fold_left ( - ) budget expenses
let deduct = List.fold_left ( - )
```

Partial application can be used, as in the second definition.

2

We can use an accumulator starting at zero, and increment it once for each element processed:

```
length : \alpha list }->\mathrm{ int
let length l =
    List.fold_left (fun a _ -> a + 1) 0 l
```

Since we ignore the element itself, the function is polymorphic.

3

If the list is empty, we return None, otherwise we use a left fold which simply replaces the accumulator with each successive element from the list. We must initialize the accumulator, so we pick the first element for that (we have already eliminated the case where there are no elements, so List. hd will succeed).

```
last : \alpha list }->\alpha\mathrm{ option
let last l =
    match l with
        [] -> None
    | _ -> Some (List.fold_left (fun _ e -> e) (List.hd l) l)
```

Not quite idiomatic.

4

If we start from the left, consing each element to the accumulator (which is initially the empty list), the list will be reversed.

```
rev : }\alpha\mathrm{ list }->\alpha\mathrm{ list
let rev l =
    List.fold_left (fun a e -> e :: a) [] l
```

Since the accumulator is the empty list (which has type α list), the function remains polymorphic, having the type we would expect.

5

The accumulator begins set to false. For each element, we calculate the logical OR of the element tested for equality and the accumulator. If at least one true occurs, the result will be true.

```
member : \alpha }->\alpha\mathrm{ list }->\mathrm{ bool
let member x l =
    List.fold_left (fun a e -> e = x || a) false l
```

Note that this is less efficient than List.mem because there is no early exit - the whole list is processed in every case.

6
This is a classic problem. We either need to

- add a space after each word except for the last; or
- add a space before each word except for the first.

With fold_left we can detect when we are at the first word, by inspecting the accumulator, and use the second method.

```
sentence : string list }->\mathrm{ string
let sentence words =
    List.fold_left
        (fun a e -> if a = "" then e else a ^ " " ^ e)
        ""
        words
```

Note that the requirement that the words be non-empty is important here. The efficiency is poor, however, since each string concatenation builds a new string. The Standard Library Buffer module is a better approach here.

7

We can use the built-in max function to update the accumulator.

```
max_depth : }\alpha\mathrm{ tree }->\mathrm{ int
let max_depth l =
    List.fold_tree (fun _ l r -> 1 + max l r) 0 l
```

The current element is ignored.

8

We can compare the speed of List.mem and member with the help of the Unix.gettimeofday function, as shown in Figure A.1. On the Author's machine, this results in:

```
Our member took 2.513232 seconds
List.mem took 1.162159 seconds
```

There is a significant speed penalty in our version of the member function, at least for this scenario.

Chapter 2 Being Lazy)

1

This is similar to the lseq function in the text, but we double every time instead of adding one.

```
ldouble : int }->\mathrm{ int lazylist
thedoubles : int lazylist
let rec ldouble n =
    Cons (n, fun () -> ldouble (n * 2))
let thedoubles = ldouble 1
```

```
l : int list
t : float
t' : float
t'' : float
let l = [1; 2; 3; 2; 1; 2; 2; 56; 32; 2; 34; 4; 2]
let t = Unix.gettimeofday ()
let _ =
    for x = 1 to 10_000_000 do ignore (member 56 l) done
let t' = Unix.gettimeofday ()
let _ =
    for x = 1 to 10_000_000 do ignore (List.mem 56 l) done
let t'' = Unix.gettimeofday ()
let _ =
    Printf.printf "Our member took %f seconds\n" (t' -. t);
    Printf.printf "List.mem took %f seconds\n" (t'' -. t')
```

Figure A. 1

Having written the function which, given a number, doubles from that point, we then just code the list itself by starting at 1 .

2

If we are asked to fetch the 0th element, we already have it - as the head of the lazy list. If not, we force evaluation of the tail, and recurse.

```
lnth : }\alpha\mathrm{ lazylist }->\mathrm{ int }->
let rec lnth (Cons (h, tf)) n =
    match n with
        0 -> h
    | _ -> lnth (tf ()) (n - 1)
```

Of course, this does not terminate on bad inputs (when $n<0$). Error detection should be added.

3

Below, the function lrepeating_inner takes the current list c and the original list l . Matching on c , we build the lazy list. If we reach the last element of the input list, we start again, with the original list, which is always retained.

```
lrepeating_inner : }\alpha\mathrm{ list }->\alpha\mathrm{ list }->\alpha\mathrm{ lazylist
lrepeating : \alpha tree }->\alpha\mathrm{ lazylist
let rec lrepeating_inner c l =
    match c with
        [] -> raise (Invalid_argument "lrepeating: empty list")
    | [x] -> Cons (x, fun () -> lrepeating_inner l l)
    | h::t -> Cons (h, fun () -> lrepeating_inner t l)
let lrepeating l = lrepeating_inner l l
```

Note that we cannot build from an empty list, since there could be no head.

4

The first two fibonacci numbers are defined to be 0 and 1 . Thereafter, we keep the current and previous number, and generate the lazy list.

```
fibonacci_inner : int }->\mathrm{ int }->\mathrm{ int lazylist
fibonacci : int lazylist
let rec fibonacci_inner x y =
    Cons (x, fun () -> fibonacci_inner y (x + y))
let fibonacci = fibonacci_inner 0 1
```


5

This is slightly delicate. We must force the tail twice, to reveal new elements for the heads of the two output lists, and the final tail for the next time each list is forced.

```
unleave : }\alpha\mathrm{ lazylist }->\alpha\mathrm{ lazylist }\times\alpha\mathrm{ lazylist
let rec unleave (Cons (h, tf)) =
    let Cons (h', tf') = tf () in
        let t = tf' () in
        (Cons (h, fun () -> fst (unleave t)),
        Cons (h', fun () -> snd (unleave t)))
```

Note that we cannot hoist the calculation of unleave t into a let so as to do it once, since to do so would not delay evaluation.

6

If we write a function which, given a number, gives the correct string, then the lazy list itself is easy to build with lmap and lseq.

```
letter_string : int }->\mathrm{ string
alphas : string lazylist
let rec letter_string n =
    if n <= 26 then
        let s = String.create 1 in s.[0] <- char_of_int (n + 64); s
    else
        letter_string ((n - 1) / 26) ^
        letter_string (((n - 1) mod 26) + 1)
let alphas =
    lmap letter_string (lseq 1)
```


Chapter 3 Named Tuples with Records)

1

Since a reference is just a record with a mutable field contents, we can use the <- construct:
OCaml

```
# let x = ref 0;;
val x : int ref = {contents = 0}
# x.contents <- 1;;
- : unit = ()
# x;;
- : int ref = {contents = 1}
```

There is no reason to use this rather than := of course.

2

The function Unix. time returns the current time. The function Unix. localtime builds from this a record of type Unix.tm. First we will need two ancillary functions:

```
string_of_month : int }->\mathrm{ string
string_of_day : int }->\mathrm{ string
let string_of_month m =
    match m with
        0 -> "January"
    | l -> "February"
    | 2 -> "March"
    | 3 -> "April"
    | 4 -> "May"
    | 5 -> "June"
    | 6 -> "July"
    | 7 -> "August"
    8 -> "September"
    9 -> "October"
    10 -> "November"
    11 -> "December"
    | _ -> raise (Invalid_argument "string_of_month")
let string_of_day d =
    match d with
        0 -> "Sunday"
        1 -> "Monday"
    | 2 -> "Tuesday"
    | 3 -> "Wednesday"
    | 4 -> "Thursday"
    | 5 -> "Friday"
    | 6 -> "Saturday"
    | _ -> raise (Invalid_argument "string_of_day")
```

Now the main function, which both uses the shortened form of a record pattern, and names only the fields we need:

```
print_time : unit }->\mathrm{ unit
let string_of_time () =
    let
        {Unix.tm_min;
            Unix.tm_hour;
            Unix.tm_mday;
            Unix.tm_mon;
            Unix.tm_year;
            Unix.tm_wday}
    =
        Unix.localtime (Unix.time ())
    in
        "It is "
        ^ string_of_int tm_hour
        ^ ":"
        ^ string_of_int tm_min
        ^ " on "
        ^ string_of_day tm_wday
        ^ " "
        ^ string_of_int tm_mday
        ^ " "
        ^ string_of_month tm_mon
        ^ " "
        ^ string_of_int (tm_year + 1900)
```

Note that the names bound by the pattern do not include the Unix prefix.

3

The construct type $t=\{x$: int ref $\}$ is a record type containing a reference to an integer. We can build it using an existing reference, and can extract the reference for use elsewhere. We can share a single reference between two or more instances of this data type. The construct type $t=\{$ mutable $x: i n t\}$ is a record with a single, mutable field. We must use <- rather than $:=$ to mutate it, and it may not be shared.

4

We can use multiple type parameters (which are written with parentheses and commas) and then use these types for the fields in the appropriate way:

```
type ('a, 'b, 'c) t =
    {a : 'a;
        b : 'a;
        c : 'b;
        d : 'b;
        e : 'c;
        f : 'c}
```


5

For the first part, we can use the function Gc.stat to return a Gc.stat record. Then we can write various components to the given file (here, we have chosen just a few):

```
write_gc_summary : string }->\mathrm{ unit
let write_gc_summary filename =
    let ch = open_out filename in
        let
            {Gc.minor_words;
            Gc.promoted_words;
            Gc.major_words;
            Gc.minor_collections;
            Gc.major_collections}
        =
            Gc.stat ()
        in
            output_string ch "Minor Words: ";
            output_string ch (string_of_float minor_words);
            output_string ch "\nPromoted Words: ";
            output_string ch (string_of_float promoted_words);
            output_string ch "\nMajor Words: ";
            output_string ch (string_of_float major_words);
            output_string ch "\nMinor Collections: ";
            output_string ch (string_of_int minor_collections);
            output_string ch "\nMajor Collections: ";
            output_string ch (string_of_int major_collections);
            close_out ch
```

For the second part, we define names for the magic numbers given in the documentation. We can then write a function change_verbosity which adds them up to make the new flags field, and uses Gc.get together with the with syntax to build a new record to be passed to Gc. set:

```
start_of_major : int
minor_collection : int
heap_grow_shrink : int
stack_resizing : int
heap_compaction : int
change_parameters : int
compute_slice_size : int
call_finalisation : int
bytecode_exe_search : int
change_verbosity : int list }->\mathrm{ unit
let start_of_major = 0x001
let minor_collection = 0x002
let heap_grow_shrink = 0x004
let stack_resizing = 0x008
let heap_compaction = 0x010
let change_parameters = 0x020
let compute_slice_size = 0x040
let call_finalisation = 0x080
let bytecode_exe_search = 0x100
let change_verbosity vs =
    let n = List.fold_left ( + ) 0 vs in
        Gc.set {(Gc.get ()) with Gc.verbose = n}
```


Chapter 4 (Generalized Input/Output)

1

This is a simple modification of input_of_string from the text, replacing string operators with array ones.

```
input_of_array : char array }->\mathrm{ input
let input_of_array a =
    let pos = ref 0 in
        {pos_in = (fun () -> !pos);
        seek_in =
            (fun p ->
                if p < 0 then raise (Invalid_argument "seek < 0");
                        pos := p);
        input_char =
            (fun () ->
            if !pos > Array.length a - 1
                        then raise End_of_file
                        else (let c = a.(!pos) in pos := !pos + 1; c));
        in_channel_length = Array.length a}
```

Note that an array of characters like this requires much more space as a string.

2

We create a Buffer.t, attempt to read the specified number of characters, and then return the contents. If one of the calls to i.input_char () raises the End_of_file exception, we return the buffer contents anyway - it will contain the characters read so far.

```
input_string : input }->\mathrm{ int }->\mathrm{ string
let input_string i n =
    let b = Buffer.create 100 in
        try
            for x = 0 to n - 1 do
                Buffer.add_char b (i.input_char ())
            done;
            Buffer.contents b
        with
            End_of_file -> Buffer.contents b
```


3

We add a function of the expected type to the input. The option None will represent the end of the file.

```
type input =
    {pos_in : unit -> int;
        seek_in : int -> unit;
        input_char : unit -> char;
        input_char_opt : unit -> char option;
        in_channel_length : int}
```

Now for a new input_of_channel. We try to build the Some option, returning None if the End_of_file exception is raised.

```
input_of_channel : in_channel }->\mathrm{ input
let input_of_channel ch =
    {pos_in = (fun () -> pos_in ch);
        seek_in = seek_in ch;
        input_char = (fun () -> input_char ch);
        input_char_opt =
            (fun () ->
            try Some (input_char ch) with End_of_file -> None);
        in_channel_length = in_channel_length ch}
```

The input_of_string function is another similar modification. This time, there is no need for exception handling.

```
input_of_string : string }->\mathrm{ input
let input_of_string s =
    let pos = ref 0 in
        {pos_in = (fun () -> !pos);
            seek_in =
            (fun p ->
                if p < 0 then raise (Invalid_argument "seek < 0");
                    pos := p);
        input_char =
            (fun () ->
                if !pos > String.length s - 1
                then raise End_of_file
                else (let c = s.[!pos] in pos := !pos + 1; c));
            input_char_opt =
            (fun () ->
                if !pos > String.length s - 1
                    then None
                    else (let c = s.[!pos] in pos := !pos + 1; Some c));
            in_channel_length = String.length s}
```


4

We add the function of type unit \rightarrow int.

```
type input =
    {pos_in : unit -> int;
        seek_in : int -> unit;
        input_char : unit -> char;
        input_byte : unit -> int;
        in_channel_length : int}
```

Now, having defined as a convenience, the name no_more for the -1 , we can modify input_of_channel and input_of_string easily:

```
no_more : int
input_of_channel : in_channel }->\mathrm{ input
input_of_string : string }->\mathrm{ input
let no_more = (-1)
let input_of_channel ch =
    {pos_in = (fun () -> pos_in ch);
        seek_in = seek_in ch;
        input_char = (fun () -> input_char ch);
        input_byte =
            (fun () ->
            try int_of_char (input_char ch) with End_of_file -> no_more);
        in_channel_length = in_channel_length ch}
let input_of_string s =
    let pos = ref 0 in
        {pos_in = (fun () -> !pos);
            seek_in =
                    (fun p ->
                        if p < 0 then raise (Invalid_argument "seek < 0");
                pos := p);
        input_char =
            (fun () ->
                if !pos > String.length s - 1
                    then raise End_of_file
                        else (let c = s.[!pos] in pos := !pos + 1; c));
        input_byte =
            (fun () ->
                if !pos > String.length s - 1
                    then no_more
                    else
                            (let c = s.[!pos] in pos := !pos + 1; int_of_char c));
        in_channel_length = String.length s}
```

These functions have none of the advantages of the exception-raising or option-returning ones, but they are very fast indeed.

5

We alter input_of_channel to check for a newline and raise End_of_file in that case.

```
single_line_input_of_channel : in_channel }->\mathrm{ input
let single_line_input_of_channel ch =
    {pos_in = (fun () -> pos_in ch);
        seek_in = seek_in ch;
    input_char =
        (fun () ->
            match input_char ch with '\n' -> raise End_of_file | c -> c);
    in_channel_length = in_channel_length ch}
```

Now we can create one of these special inputs from standard input, and use our input_string function to build a string from the user's input, ending when the return key is pressed. For example:

```
# input_string (single_line_input_of_channel stdin) max_int;;
Some input
- : string = "Some input"
```


6

Ideal functions to use when defining the new type already exist in the Buffer module. Then, we can build an example, where we give a name to the buffer, build an input from it and process it, retrieving its contents afterwards.

```
output_of_buffer : Buffer.t -> output
build_buffer : unit }->\mathrm{ string
let output_of_buffer b =
    {output_char = Buffer.add_char b;
        out_channel_length = fun () -> Buffer.length b}
let build_buffer () =
    let b = Buffer.create 20 in
        let o = output_of_buffer b in
            o.output_char 'A';
            o.output_char 'B';
            o.output_char 'C';
            Buffer.contents b
```


Chapter 5 (Streams of Bits)

1

We can read quickly if the number of bits wanted is 8 and we happen to be at the beginning of a byte. In this case we can call the underlying output's input_char function directly.

```
getval_fast : input_bits }->\mathrm{ int }->\mathrm{ int
let getval_fast b n =
    if n = 8 && b.bit = 0
        then b.input.input_char ()
        else getval b n
```

If the conditions are not met, we fall back to the old getval function. This will be faster if we frequently read data aligned-byte-by-aligned-byte, but we still need the flexibility of a stream of bits when required.

2

We simply replace the int operators with those for Int32.t:

```
getval_32 : input_bits }->\mathrm{ int }->\mathrm{ Int32.t
let getval_32 b n =
    if n < 0 then raise (Invalid_argument "getval_32") else
        if n = 0 then 0l else
            let r = ref Int32.zero in
            for }x=n - 1 downto 0 d
                    let num = Int32.of_int (if getbit b then 1 else 0) in
                        r := Int32.logor !r (Int32.shift_left num x)
            done;
            ! r
```


3

Our precondition this time is that the number of bits to be written is 8 and the obit field is set to its initial value, 7 . Then we can use the output_char function of the underlying output.

```
putval_fast : output_bits }->\mathrm{ int }->\mathrm{ int }->\mathrm{ unit
let putval_fast o v l =
    if l = 8 && o.obit = 7
        then o.output.output_char v
    else putval o v l
```

Otherwise, we fall back to the old putval function.

4

The integer functions are replaced by ones from the Int 32 module:

```
putval_32 : output_bits }->\mathrm{ Int32.t }->\mathrm{ int }->\mathrm{ unit
let putval_32 o v l =
    for x = l - 1 downto 0 do
        putbit o
            (Int32.to_int
            (Int32.logand v (Int32.shift_left (Int32.of_int x) 1)))
    done
```


5

We add a field rewind which will move the position in the output backwards one byte, if possible. This is the new type:

```
type output =
    {output_char : char -> unit;
    rewind : unit -> unit;
    out_channel_length : unit -> int}
```

Now we can rewrite, for example, output_of_string for this new type:

```
output_of_string : string }->\mathrm{ output
let output_of_string s =
    let pos = ref 0 in
        {output_char =
            (fun c ->
                if !pos < String.length s
                    then (s.[!pos] <- c; pos := !pos + 1)
                else raise End_of_file);
        rewind =
            (fun () ->
                if !pos > 0
                        then pos := !pos - 1
                else raise (Failure "rewind"));
        out_channel_length =
            (fun () -> String.length s)}
```

We alter putbit appropriately:

```
putbit : output_bits }->\mathrm{ int }->\mathrm{ unit
let rec putbit o b =
    if o.obit = (-1) then
        begin
            o.obyte <- 0;
            o.obit <- 7;
            putbit o b
        end
    else
        begin
            if b <> 0 then o.obyte <- o.obyte lor (1 lsl o.obit);
            o.output.output_char (char_of_int o.obyte);
            o.output.rewind ();
            o.obit <- o.obit - 1
        end
```


Chapter 6 (Compressing Data)

1

We will need to look through the input list of integers (bytes), finding same and different runs and building a new list. For clarity, we will produce the output runs using a new type, producing the actual bytes later:

```
type run = Same of int * int | Diff of int list
```

The Same case holds a (length, value) pair and Diff just a list of bytes. Now we can write a function get_same which, given the first value, the current count, and the list, returns a pair of the final count of like characters, and the remaining list:

```
get_same : \alpha int int list }->\mathrm{ int }\times\alpha\mathrm{ list
let rec get_same x n l =
    match l with
        h::t when h = x -> get_same x ( n + 1) t
    | _ -> (n, l)
```

Similarly, we can define a function to read a different run into an accumulator, returning the run and the remaining list. This function will be called only when get_same returned a run of length one.

```
get_different : }\alpha->\alpha\mathrm{ list }->\alpha\mathrm{ list }\times\alpha\mathrm{ list
let rec get_different a l =
    match l with
        [] -> (List.rev a, [])
    | h::t ->
        if a = [] then get_different [h] t
        else if h <> List.hd a then get_different (h :: a) t
        else (List.rev (List.tl a), List.hd a :: l)
```

Now we can write a function which uses both of these functions to get a single run, creating an instance of our new data type:

```
getrun : int list }->\mathrm{ run }\times\mathrm{ int list
let getrun l =
    match l with
        [] -> raise (Invalid_argument "getrun")
    | h::_ ->
        match get_same h 0 l with
            1, _ ->
                let diff, rest = get_different [] l in (Diff diff, rest)
            | n, rest -> (Same (n, h), rest)
```

Now, we use the defined rules to build a function which makes a list of bytes from a run:

```
chars_of_run : run }->\mathrm{ int list
let chars_of_run r =
    match r with
        Same (length, c) -> [257 - length; c]
    | Diff chars -> List.length chars - 1 :: chars
```

With all this done, it is easy to define the compression function itself, which accumulates runs, concatenating them when all the data has been processed. We must be sure to add the EOD marker at the end.

```
compress_inner : run list }->\mathrm{ int list }->\mathrm{ int list
compress : int list }->\mathrm{ int list
let rec compress_inner a l =
    match l with
        [] -> List.concat (List.map chars_of_run (List.rev a))
    | - ->
        let run, rest = getrun l in
            compress_inner (run :: a) rest
let compress l = compress_inner [] l @ [128]
```

Decompression is rather simpler, making use of our take and drop functions from the Util module described on page xiii. We read each run and expand it to a list of bytes, accumulating them until end of data.

```
decompress_inner : int list list }->\mathrm{ int list }->\mathrm{ int list
decompress : int list }->\mathrm{ int list
let rec decompress_inner a l =
    match l with
        [128] -> List.concat (List.rev a)
    | [] | [_] -> raise (Invalid_argument "decompress_inner")
    | h::t::t' ->
        if h < 127 then
            let bytes = Util.take (t :: t') (h + 1) in
            let rest = Util.drop (t :: t') (h + 1) in
                    decompress_inner (bytes :: a) rest
            else if h > 128 then
                decompress_inner
                    (Array.to_list (Array.make (257 - h) t) :: a) t'
            else decompress_inner a []
let decompress l = decompress_inner [] l
```

Note a little cheat - we use functions from the Array module to expand the Same run.

2

The tree carries no information in its branches (since no code can be a prefix of another code). Leaves can carry or not carry information, depending on whether there is a code there. In order to avoid option types, we can just split into three cases, Lf for empty leaves, Code for full ones, and Br for a branch, where 0 goes left and 1 goes right.
type tree $=$ Lf | Code of int | Br of tree * tree
Now, we can define the function to add a code to an existing tree. For example, add_elt Lf ([0; 1],
67) adds the code [0; 1] for the run length 67. This will build the tree Br (Br (Lf, Code 67) , Lf). We match on the code, building the tree as we go left or right.

```
add_elt : tree }->\mathrm{ int list }\times\mathrm{ int }->\mathrm{ tree
let rec add_elt tr (l, n) =
    match l with
        0::m ->
            begin match tr with
                Lf -> Br (add_elt Lf (m, n), Lf)
            | Br (left, right) -> Br (add_elt left (m, n), right)
            | Code x -> raise (Failure "collision")
            end
    | 1::m ->
            begin match tr with
                Lf -> Br (Lf, add_elt Lf (m, n))
            | Br (left, right) -> Br (left, add_elt right (m, n))
            | Code x -> raise (Failure "collision")
            end
    | [] -> Code n
    | _ -> raise (Failure "bad code")
```

Now, to build the whole tree, we just use repeated insertion with fold_left, having built the (code, run length) pairs:

```
make_tree : int list array }->\mathrm{ int list }->\mathrm{ tree
let make_tree arr numbers =
    List.fold_left
        add_elt
        Lf
        (List.combine (Array.to_list arr) numbers)
```

Now, for example, we can build the white terminating codes as a tree:

```
white_terminating_tree : tree
let white_terminating_tree =
    make_tree
        white_terminating_codes
        (Util.from 0 (Array.length white_terminating_codes - 1))
```

(Util. from $a b$ gives the list of numbers starting at a and ending $a t b$ in ascending order). The function succeeds, verifying that there are no collisions, and yields:

```
Br
(Br
    (Br
            (Br
                    (Br
                    (Br (Br (Lf, Br (Code 29, Code 30)),
                    Br (Br (Code 45, Code 46), Code 22)),
                Br (Br (Code 23, Br (Code 47, Code 48)), Code 13)),
                    Br
                    (Br (Br (Code 20, Br (Code 33, Code 34)),
                    Br (Br (Code 35, Code 36), Br (Code 37, Code 38))),
                    Br (Br (Code 19, Br (Code 31, Code 32)), Code 1))),
            Br
                    (Br (Br (Code 12, Br (Br (Code 53, Code 54), Code 26)),
                    Br ( Br (Br (Code 39, Code 40), Br (Code 41, Code 42)),
                    Br (Br (Code 43, Code 44), Code 21))),
            Br
                (Br (Br (Code 28, Br (Code 61, Code 62)),
                    Br (Br (Code 63, Code 0), Lf)),
            Code 10))),
        Br
            (Br
                (Br (Code 11,
                    Br (Br (Code 27, Br (Code 59, Code 60)), Br (Lf, Code 18))),
                    Br
                    (Br (Br (Code 24, Br (Code 49, Code 50)),
                        Br (Br (Code 51, Code 52), Code 25)),
                    Br (Br (Br (Code 55, Code 56), Br (Code 57, Code 58)), Lf))),
            Br (Lf, Code 2))),
Br
    (Br (Br (Code 3, Br (Lf, Code 8)),
        Br (Br (Code 9, Br (Code 16, Code 17)), Code 4)),
    Br (Br (Code 5, Br (Br (Code 14, Code 15), Lf)), Br (Code 6, Code 7))))
```


3

Compressing our data with compress_string input_data 16801 instead of compress_string input_data 8021 generates a string of length 110 bytes rather than 120 bytes. This is because we could generate one run for the white section at the end of one line followed by a white section at the beginning of the next, instead of splitting at line boundaries.

If we try to re-compress this data, with compress_string compressed 8801 , the data size increases to 197 bytes. This is unsurprising, since the job of the white and black codes is to be information-dense and the compression algorithm works best on data which is information-sparse.

4

We can re-use the read_up_to function to build our histogram. Given white and black arrays, each of length 1792 and with elements initialized to zero, the input bits and the width and height, we can repeatedly call read_up_to. We must maintain a count of how many pixels are left to be read, and an
additional count of how many are left in this line, so the correct width can be passed to the read_up_to function.

```
build_histogram : int array }->\mathrm{ int array }->\mathrm{ input_bits }->\mathrm{ int }->\mathrm{ int }->\mathrm{ unit
let build_histogram a_white a_black i w h =
    let toread = ref (w * h) in
    let wleft = ref w in
        while !toread > 0 do
            let n, v = read_up_to (peekbit i) i 0 !wleft in
                    let a = if v then a_black else a_white in
                        a.(n) <- a.(n) + 1;
                        toread := !toread - n;
                        wleft := !wleft - n;
                        if !wleft = 0 then wleft := w
        done
```

Now it is easy to build two histograms - one for white and one for black, and return them:

```
histogram_of_input : input }->\mathrm{ int }->\mathrm{ int }->\mathrm{ (int array }\times\mathrm{ int array)
let histogram_of_input i w h =
    let white = Array.make 1792 0 in
        let black = Array.make 1792 0 in
            build_histogram white black (input_bits_of_input i) w h;
            (white, black)
```

We can define a simple function to print the histogram, eliding any zero counts:

```
print_histogram : int array }->\mathrm{ unit
let print_histogram =
    Array.iteri
        (fun x n ->
        if n > 0 then Printf.printf "%i runs of length %i\n" n x)
```

Here is the histogram for white runs on our example data:

```
# print_histogram white;;
5 runs of length 1
7 runs of length 2
1 5 \text { runs of length 3}
15 runs of length 4
34 runs of length 5
20 runs of length 6
4 runs of length 7
```

```
Answers to Questions
4 runs of length }
4 \text { runs of length 9}
3 runs of length 10
3 runs of length 11
7 runs of length }1
1 runs of length 13
1 runs of length 14
1 runs of length 15
3 runs of length 16
1 runs of length }1
1 runs of length 20
1 runs of length 21
3 runs of length 35
1 runs of length }3
1 runs of length 46
1 \text { runs of length 47}
1 runs of length }7
3 runs of length }8
- : unit = ()
```

And here is the histogram for black runs:

```
# print_histogram black;;
12 runs of length 1
5 5 \text { runs of length 2}
38 runs of length 3
5 runs of length 4
2 runs of length 5
1 runs of length 6
1 runs of length 7
1 runs of length 8
2 runs of length }
2 runs of length 10
- : unit = ()
```


Chapter 7 (Labelled and Optional Arguments)

1

If α is int then the first and second argument can be confused. We can fix this by adding labels and calling Array. make. Notice the use of punning here.

```
map : len:int }->\mathrm{ elt: }\alpha->\alpha\mathrm{ array
let make ~len ~elt =
    Array.make len elt
```

Now the function can be called without confusion:

OCaml
\# make ~len:5 ~elt:4; ;

- : int array = [|4; 4; 4; 4; 4|]

Of course, it can still be called without labels.

2

We can define separate types for the start and length so that their names must be mentioned when calling the function.

```
fill : \alpha array }->\mathrm{ start }->\mathrm{ length }->\alpha->\mathrm{ unit
filled : unit }->\mathrm{ string array
type start = Start of int
type length = Length of int
let fill a (Start s) (Length l) v =
    for }x=s\mathrm{ to s + l - 1 do a.(x) <- v done
let filled () =
    let a = Array.make 100 "x" in
        fill a (Start 20) (Length 40) "y";
        a
```

Not nearly as convenient as labels, though.

3

There are three functions where confusion may arise, and we can label them with simple wrappers. They are the functions where multiple arguments have the same type, and so may be confused.

```
sub : Buffer.t }->\mathrm{ off:int }->\mathrm{ len:int }->\mathrm{ string
blit : Buffer.t }->\mathrm{ srcoff:int }->\mathrm{ string }->\mathrm{ dstoff:int }->\mathrm{ len:int }->\mathrm{ unit
add_substring : Buffer.t }->\mathrm{ string }->\mathrm{ ofs:int }->\mathrm{ len:int }->\mathrm{ unit
let sub b ~off ~len =
    Buffer.sub b off len
let blit src ~srcoff dst ~dstoff ~len =
    Buffer.blit src srcoff dst dstoff len
let add_substring b s ~ofs ~len =
    Buffer.add_substring b s ofs len
```


4

We can make the accumulator an optional argument. Now the caller can call the function as if it were the same as List.map.

```
map : ?a:\alpha list }->(\beta->\alpha)->\beta\mathrm{ list }->\alpha\mathrm{ list
let rec map ?(a = []) f l =
    match l with
        [] -> List.rev a
    | h::t -> map ~a:(f h :: a) f t
```

The optional argument must still appear in the interface, of course, so we might still prefer the old approach of wrapping it up and only exposing the wrapper.

Chapter 8 Formatted Printing)

1

We can use Printf.bprintf to accumulate the individual parts, making sure to deal with the final element specially. The outer function sets everything up.

```
cycle_of_points_inner : Buffer.t }->\mathrm{ (int }\times\mathrm{ int) list }->\mathrm{ string
cycle_of_points : (int }\times\mathrm{ int) list }->\mathrm{ string
let rec cycle_of_points_inner b l =
    match l with
        [] ->
            Buffer.contents b
    | [(x, y)] ->
        Printf.bprintf b "(%i, %i)" x y;
        Buffer.contents b
    | (x, y)::t ->
        Printf.bprintf b "(%i, %i) --> " x y;
        cycle_of_points_inner b t
let cycle_of_points l =
    match l with
        [] -> ""
    | h::t ->
        cycle_of_points_inner (Buffer.create 256) (h :: t @ [h])
```


2

Again, Printf.bprintf is the key. This time, we can calculate the initial buffer size exactly.

```
hex_of_string : string }->\mathrm{ string
let hex_of_string s =
    let b = Buffer.create (String.length s * 2) in
        String.iter
            (fun c -> Printf.bprintf b "%02X" (int_of_char c))
            S;
        Buffer.contents b
```

We have used a width specifier of 2 and the 0 flag to make sure that characters with code $0 . .15$ are padded with a zero.

3

The format string for Printf.printf must be known at compile time. The solution for printing the result of mkstring using printf is the \%s format specification:

```
Printf.printf "%s" (mkstring ())
```


4

The $*$ character can be used as a width or precision specifier, to indicate that the width or precision is given as an argument. We use $*$ for the width, and pass in 10.

```
Printf.sprintf "(%*i)" 10 1
```

So, the result is:

$$
\left(\begin{array}{ll}
(& 1)
\end{array}\right.
$$

We can use List. iter to print a table by applying this to each of a list of numbers in turn.

```
print_integers : int }->\mathrm{ int list }->\mathrm{ unit
let print_integers w ns =
    List.iter (Printf.printf "(%*i)" w) ns
```


Chapter 9 Searching for Things)

1

For the first part, where all matches are considered, we can rewrite search with an extra argument to count the matches, restructuring its logic so as not to finish upon the first match.

```
string' : int }->\mathrm{ int }->\mathrm{ string }->\mathrm{ string }->\mathrm{ int
string : string }->\mathrm{ string }->\mathrm{ int
let rec search' matches n ss s =
    if String.length ss > String.length s - n then matches else
        if at ss 0 s n (String.length ss)
            then search' (matches + 1) (n + 1) ss s
            else search' matches (n + 1) ss s
let search = search' 0 0
```

There is no need to rewrite the at function. Now, for the version which considers only non-overlapping matches, we just jump by the length of the pattern ss upon a match:

```
string' : int }->\mathrm{ int }->\mathrm{ string }->\mathrm{ string }->\mathrm{ int
string : string }->\mathrm{ string }->\mathrm{ int
let rec search' matches n ss s =
    if String.length ss > String.length s - n then matches else
        if at ss 0 s n (String.length ss)
            then search' (matches + 1) (n + String.length ss) ss s
            else search' matches (n + 1) ss s
let search = search' 0 0
```


2

It is simple to write a function which returns the length of the longest matching prefix at the beginning of a list:

```
prefix : }\alpha\mathrm{ list }->\alpha\mathrm{ list }->\mathrm{ int
let rec prefix p l =
    match p, l with
        ph::pt, lh::lt -> if ph = lh then l + prefix pt lt else 0
    | _ -> 0
```

Now, we can write a function which keeps track of the position and length of the longest prefix found, returning them when the whole list has been searched.

```
longest_prefix_inner : int }->\mathrm{ int }->\mathrm{ int }->\alpha\mathrm{ list }->\alpha\mathrm{ list }->\mathrm{ int }\times\mathrm{ int
longest_prefix : }\alpha\mathrm{ list }->\alpha\mathrm{ list }->\mathrm{ int }\times\mathrm{ int
let rec longest_prefix_inner currpos bestpos bestlen p l =
    match l with
        [] -> (bestpos, bestlen)
    | h::t ->
        let prelen = prefix p l in
            if prelen > bestlen then
                longest_prefix_inner (currpos + 1) currpos prelen p t
            else
                longest_prefix_inner (currpos + 1) bestpos bestlen p t
let longest_prefix p l =
    longest_prefix_inner 0 0 0 p l
```

Here, currpos is the current position, bestpos the position of the longest matching prefix found so far, and bestlen the length of the longest prefix so far.

3

We can write a simple profiling function which, given a search function, measures its running time. This allows us to compare the naive and better versions of search we wrote for searching in strings:

```
profile : (string \(\rightarrow\) string \(\rightarrow \alpha\) ) \(\rightarrow\) float
let profile f =
    let \(\mathrm{t}=\) Unix.gettimeofday () in
        for \(x=1\) to 1_000_000 do
            ignore (f "ABA" "Somewhere in here is the pattern ABBBBAABA.")
        done;
        Unix.gettimeofday () -. t
```

Compiling with ocamlc on the Author's machine:

```
Naive version took 7.608291 seconds
Better version tool 3.388830 seconds
```

Now, compiling with ocamlopt:

Naive version took 2.966211 seconds
Better version tool 0.450546 seconds

4

We can add a case to the main search. We must check the character following the backslash for a match, assuming there is such a next character. If so, we move two positions in the pattern and one in the string. Otherwise, the match has failed.

```
| '\\'->
    if
        sp < String.length s &&
        ssp < String.length ss - 1 &&
        ss.[ssp + 1] = s.[sp]
    then
        Some (2, 1)
    else
        None
```


5

The Standard Library function String. uppercase can be used, in conjunction with the optional boolean argument:

```
search : ?nocase:bool }->\mathrm{ string }->\mathrm{ string }->\mathrm{ bool
let search ?(nocase = false) ss s =
    if nocase then
        search' 0 (String.uppercase ss) (String.uppercase s)
    else
        search' 0 ss s
```

Both the pattern and string must be upper case, of course.

Chapter 10 (Finding Permutations)

1

The combinations of a list can be generated by calculating the combinations of the tail. Then consider two possibilities - the head is included in this combination, or it is not:

```
combinations : \alpha list }->\alpha\mathrm{ list list
let rec combinations l =
    match l with
        [] -> [[]]
    | h::t ->
        let cs = combinations t in
            List.map (fun x -> h :: x) cs @ cs
```

Note the base case is the list containing the empty list, not just the empty list.

2

We build this from perms and the combinations function we just wrote:

```
permicombinations : }\alpha\mathrm{ list }->\alpha\mathrm{ list list
let permicombinations l =
    List.concat (List.map perms (combinations l))
```

We used the tail-recursive version of perms, of course.

3

This has roughly the same shape as combinations, with two differences: we keep a counter to make sure the computation ends, and we always add something to the list - either true or false.

```
bool_lists : int }->\mathrm{ bool list list
let rec bool_lists n =
    match n with
        0 -> [[]]
    | - ->
        let ls = bool_lists (n - 1) in
            (List.map (fun l -> true :: l) ls) @
            (List.map (fun l -> false :: l) ls)
```

We repeatedly swap elements from opposite ends of the sub-array, given an array, offset and length:

```
array_rev : \alpha array }->\mathrm{ int }->\mathrm{ int }->\mathrm{ unit
let array_rev a o l =
    for x = 0 to l / 2 - 1 do
        swap a (o + x) (o + l - x - 1)
    done
```

It is important to make sure it works for the empty range, an even-length sub-array and an odd-length sub-array. You could add detection of invalid arguments to this function.

5

The two functions first and last turn out to be even more awkward than their imperative counterparts. The function first, given a list, returns a tuple of three things: the elements before the "first" item, the first item itself, and those afterward. This is done by reversing the input list and looking for the first appropriate item, since this is easier than looking for the last appropriate item in the original input:

```
first_inner : \alpha list }->\alpha\mathrm{ list }->(\alpha\mathrm{ list }\times\alpha\times\alpha\mathrm{ list)
first : \alpha list }->(\alpha\mathrm{ list }\times\alpha\times\alpha\mathrm{ list)
let rec first_inner before l =
    match l with
        [] -> raise (Invalid_argument "first_inner")
    | [x] -> (List.rev before, x, [])
    | a::b::t ->
        if b < a
                then (List.rev t, b, (a :: before))
                else first_inner (a :: before) (b :: t)
let first l =
    first_inner [] (List.rev l)
```

The last function is still more verbose: we locate the correct item by sorting and finding the smallest item greater than f. Then we can call split_at to return the item before and after the instance of f.

```
split_at_inner : \alpha list }->\alpha->\alpha\mathrm{ list }->\alpha\mathrm{ list }\times\alpha\mathrm{ list
split_at : \alpha -> | list }->\alpha\mathrm{ list }\times\alpha\mathrm{ list
last : \alpha ->\alpha list }->\alpha\mathrm{ list }\times\alpha\times\alpha\mathrm{ list
let rec split_at_inner before n l =
    match l with
        [] -> (List.rev before, [])
    | h::t ->
        if h = n
            then (List.rev before, t)
            else split_at_inner (h :: before) n t
let split_at n l =
    split_at_inner [] n l
let last f l =
    match List.filter (fun x -> x > f) (List.sort compare l) with
        [] -> raise (Invalid_argument "last")
    | h::t ->
        let before, after = split_at h l in
            (before, h, after)
```

Now, the next_permutation function calls first and last, and stitches everything together:

```
next_permutation : }\alpha\mathrm{ list }->\alpha\mathrm{ list
let next_permutation l =
    let before_f, f, after_f = first l in
        let before_c, c, after_c = last f after_f in
        before_f @ [c] @ List.rev (before_c @ [f] @ after_c)
```

Here is the equivalent non_increasing function, which is simple:

```
non_increasing : }\alpha\mathrm{ list }->\mathrm{ bool
let rec non_increasing l =
    match l with
        [] | [_] -> true
    | a::b::t -> a >= b && non_increasing (b :: t)
```

The final all_permutations function is now easy.

```
all_permutations_inner : \alpha list list }->\alpha\mathrm{ list }->\alpha\mathrm{ list list
all_permutations : \alpha list }->\alpha\mathrm{ list list
let rec all_permutations_inner a l =
    if non_increasing l then List.rev a else
        let next = next_permutation l in
            all_permutations_inner (next :: a) next
let all_permutations l =
    l :: all_permutations_inner [] l
```

Conclusion: converting an imperative algorithm mechanically to a functional style is not always useful.

Chapter 11 Making Sets)

1

It is not possible to measure directly the memory used by an OCaml data structure (though one could calculate it by reading the section in the OCaml manual about data representation), but we can use the Gc module to measure the number of words allocated whilst building the structure, by using the data in Gc . counters before and after building each structure, and the given formula "memory used since start of program $=$ minor words + major words - promoted words":

Set representation	Memory used (words)
List	150006
Tree	3911613
Red-Black tree	8193038
Hash table	265559

Notice that a huge amount more is required for the tree structures, because every time a new element is inserted, part of the tree is rewritten. In the case of the Red-Black tree, rotations involve allocating new memory too.

2

We can add the type for the union function to our signature:

```
module type SetType2 =
    sig
        type 'a t
        val set_of_list : 'a list -> 'a t
        val list_of_set : 'a t -> 'a list
        val insert : 'a -> 'a t -> 'a t
        val size : 'a t -> int
        val member : 'a -> 'a t -> bool
        val union : 'a t -> 'a t -> 'a t
    end
```

For lists, the union function is easy, we just insert each element of b into the list a. Duplicates will be removed correctly:

```
let union a b = List.fold_left (fun x y -> insert y x) a b
```

For trees and Red-Black trees, we must turn b into a list first, so fold_left can be used, but the solution is broadly the same.

```
let union a b = List.fold_left (fun x y -> insert y x) a (list_of_set b)
```

For hash tables, to preserve the previous tables, we must build lists from both sets, and then build a new set from the concatenation of those too lists:

```
let union a b = set_of_list (list_of_set a @ list_of_set b)
```

The built-in Set module, which is considered in Question 3, provides a particularly efficient union operation.

3

We write a version of our set signature which is specialized to integers. Then, we use the syntax given in the question to build the module S. This contains the type S.t, the value S.empty and the functions S.elements, S.add, S.mem, and S.cardinal, which we can use to write the functions to match our signature.

```
module IntSet :
    sig
        type t
        val set_of_list : int list -> t
        val list_of_set : t -> int list
        val insert : int -> t -> t
        val size : t -> int
        val member : int -> t -> bool
    end
=
    struct
        module S =
            Set.Make (struct type t = int let compare = compare end)
        type t = S.t
        let list_of_set s = S.elements s
        let set_of_list l = List.fold_right S.add l S.empty
        let member = S.mem
        let insert = S.add
        let size = S.cardinal
    end
```

Now the benchmarking for insertion and membership is simple:

```
benchmark_intset : string }->\mathrm{ int list }->\mathrm{ unit
let benchmark_intset name ns =
    let a = Unix.gettimeofday () in
        let set = IntSet.set_of_list ns in
            let b = Unix.gettimeofday () in
                List.iter (fun x -> ignore (IntSet.member x set)) ns;
            let c = Unix.gettimeofday () in
                Printf.printf
                    "For %s, insertion took %f, membership %f\n"
                        name (b -. a) (c -. b)
let _ =
    benchmark_intset "ordered" nums;
    benchmark_intset "unordered" rand
```

Here is the output:

For ordered, insertion took 0.056586, membership 0.019593
For unordered, insertion took 0.087148 , membership 0.021295

4

We can change the type thus, with BrR for red and BrB for black:

```
type 'a t =
    Lf
    BrR of 'a t * 'a * 'a t
    BrB of 'a t * 'a * 'a t
```

Now, the solutions are tedious to write out, but not difficult. The result is Figure A.2.

Chapter 12 (Playing Games)

1

We already know that O wins 131184 times. By a similar use of num_wins we find that X wins 77904 times. So, as expected, going first is an advantage. We must write another function to find how many draws there are. A board is drawn if it is full but does not contain a winning configuration of either X or O :

```
drawn : tree }->\mathrm{ int
let rec drawn (Move (b, bs)) =
    (if
        empty b = [] &&
        not (won (List.map (( = ) 0) b)) &&
        not (won (List.map (( = ) X) b))
        then 1 else 0)
+
    List.fold_left ( + ) 0 (List.map drawn bs)
```

This tells us that there are 46080 drawn games. Since each game must be either won or drawn, the total number of possible games is $131184+77904+46080=255168$. We can check this by writing a function to find the terminal nodes directly:

```
terminals : tree }->\mathrm{ int
let rec terminals (Move (b, bs)) =
    (if bs = [] then 1 else 0) +
    List.fold_left ( + ) 0 (List.map terminals bs)
```

This gives 255168 too.

```
module SetRedBlack : sig include SetType end =
    struct
        type 'a t =
            Lf
        | BrR of 'a t * 'a * 'a t
        | BrB of 'a t * 'a * 'a t
        let rec list_of_set s =
            match s with
                Lf -> []
            | BrR (l, x, r) | BrB (l, x, r) ->
                x :: list_of_set l @ list_of_set r
        let balance t =
            match t with
                BrB (BrR (BrR (a, x, b), y, c), z, d)
            | BrB (BrR (a, x, BrR (b, y, c)), z, d)
            | BrB (a, x, BrR (BrR (b, y, c), z, d))
            | BrB (a, x, BrR (b, y, BrR (c, z, d))) ->
                BrR (BrB (a, x, b), y, BrB (c, z, d))
            | BrR (a, b, c) -> BrR (a, b, c)
            | BrB (a, b, c) -> BrB (a, b, c)
            | Lf -> Lf
        let rec insert_inner x s =
            match s with
                Lf -> BrR (Lf, x, Lf)
            | BrR (l, y, r) ->
                if x < y
                    then balance (BrR (insert_inner x l, y, r))
                    else if x > y then balance ( }\operatorname{BrR}(l,y, insert_inner x r))
                    else BrR (l, y, r)
            | BrB (l, y, r) ->
                if x<y
                    then balance (BrB (insert_inner x l, y, r))
                    else if x > y then balance ( }\operatorname{BrB}\mathrm{ (l, y, insert_inner x r))
                    else BrB (l, y, r)
        let insert x s =
                match insert_inner x s with
                BrR (l, y, r) | BrB (l, y, r) -> BrB (l, y, r)
                | Lf -> assert false
            let rec set_of_list l =
                match l with
                [] -> Lf
                | h::t -> insert h (set_of_list t)
            let rec size s =
                match s with
                Lf -> 0
                | BrR (l, _, r) | BrB (l, _, r) -> l + size l + size r
            let rec member x s =
                match s with
                Lf -> false
                | BrR (l, y, r) | BrB (l, y, r) ->
                    x = y || if x > y then member x r else member x l
    end
```

Figure A. 2

2

We need make only two small changes. Delaying evaluation in the type...

```
type tree = Move of turn list * (unit -> tree list)
```

... and altering next_moves to insert that delay:

```
next_moves : turn }->\mathrm{ turn list }->\mathrm{ tree
let rec next_moves turn board =
    let next =
        fun () ->
            if
                won (List.map (( = ) 0) board) ||
                won (List.map (( = ) X) board)
            then
                []
            else
                List.map
                    (next_moves (flip_turn turn))
                    (List.map (replace turn board) (empty board))
    in
        Move (board, next)
```

Now, we can carefully write a function select_case which, given a starting board such as [E; E; E; $\mathrm{E} ; 0 ; \mathrm{E} ; \mathrm{E} ; \mathrm{E} ; \mathrm{E}]$ and the game tree, returns the portion of the game tree matching that board. Due to laziness, the rest of the tree is now not explored.

We can now alter num_wins easily for the delayed case, and write a function pos_wins which returns the number of wins starting from a position like $[\mathrm{E} ; \mathrm{E} ; \mathrm{E} ; \mathrm{E} ; \mathrm{O} ; \mathrm{E} ; \mathrm{E} ; \mathrm{E} ; \mathrm{E}$].

```
select_case : turn list }->\mathrm{ tree }->\mathrm{ tree
num_wins : turn }->\mathrm{ tree }->\mathrm{ int
pos_wins : turn }->\mathrm{ turn list }->\mathrm{ int
let select_case board (Move (_, f)) =
    match List.filter (fun (Move (b, _)) -> b = board) (f ()) with
        [Move (b, g)] -> g ()
    | _ -> raise (Failure "select_case")
let rec num_wins turn (Move (b, bs)) =
    (if won (List.map (( = ) turn) b) then 1 else 0) +
    List.fold_left ( + ) 0 (List.map (num_wins turn) (bs ()))
let pos_wins turn pos =
    List.fold_left ( + ) 0
        (List.map (num_wins turn) (select_case pos game_tree))
```

Similarly, we can modify the drawn function to work with the new lazy structure, and write a new function draws to count the drawn positions from given starting board such as $[E ; E ; E ; E ; 0 ; E ; E ; E ; E]$:

```
drawn : tree }->\mathrm{ int
draws : turn list }->\mathrm{ int
let rec drawn (Move (b, bs)) =
    (if
        empty b = [] &&
        not (won (List.map (( = ) 0) b)) &&
        not (won (List.map (( = ) X) b))
        then 1 else 0)
    +
    List.fold_left ( + ) 0 (List.map drawn (bs ()))
let draws pos =
    List.fold_left ( + ) 0
        (List.map drawn (select_case pos game_tree))
```

Now we can define starting boards for the centre spot, the middle of a side, and a corner. We can now use pos_wins and draws, taking account of symmetry to enumerate all the cases:

```
let centre = [E; E; E; E; 0; E; E; E; E]
let side = [E; O; E; E; E; E; E; E; E]
let corner = [O; E; E; E; E; E; E; E; E]
let centre_x_wins = pos_wins X centre
let centre_o_wins = pos_wins O centre
let centre_drawn = draws centre
let side_X_wins = pos_wins X side * 4
let side_o_wins = pos_wins 0 side * 4
let side_drawn = draws side * 4
let corner_X_wins = pos_wins X corner * 4
let corner_o_wins = pos_wins 0 corner * 4
let corner_drawn = draws side * 4
```

This gives the following:

```
val centre_x_wins : int = 5616
val centre_o_wins : int = 15648
val centre_drawn : int = 4608
val side_x_wins : int = 40704
val side_O_wins : int = 56928
val side_drawn : int = 20736
val corner_x_wins : int = 31584
val corner_o_wins : int = 58608
val corner_drawn : int = 20736
```

The total is 255168, of course.

3

The strategy of using the magic square representation is to build a problem which is isomorphic (has the same essential characteristics - literally the same shape) to the original one, but is easier to work with. Before building the tree tree, we will need five little functions:

- sum, which checks if a list sums to 15 ;
- threes, which finds all the combinations of numbers from a list of numbers which are of length three (the combinations function is from Chapter 10);
- won, which uses threes to check if a list of integers contains a combination of three numbers which sum to 15;
- drawn which, given the integer lists for X and O , works out if the game has been drawn; and
- possibles which, given all the non-empty squares, lists the empty ones.

```
sum : int list }->\mathrm{ bool
threes : }\alpha\mathrm{ list }->\alpha\mathrm{ list list
won : int list }->\mathrm{ bool
drawn : }\alpha\mathrm{ list }->\beta\mathrm{ list }->\mathrm{ bool
possibles : int list }->\mathrm{ int list
let sum l = List.fold_left ( + ) 0 l = 15
let threes l = List.filter (fun l -> length l = 3) (combinations l)
let won l = List.mem true (List.map sum (threes l))
let drawn l l' = length l + length l' = 9
let possibles all =
    List.filter
        (fun x -> not (List.mem x all))
        [1; 2; 3; 4; 5; 6; 7; 8; 9]
```

Now, the type contains a list of X positions, a list of O positions, and the list of child nodes:

```
type tree = Move of int list * int list * tree list
```

We do not need a type for the turn this time - we can just use a boolean. The function next_moves follows the usual pattern - if the game is won or drawn, the list of child nodes is empty. Otherwise, we build child nodes for each possible position the next player could place his piece.

```
next_moves : int list }->\mathrm{ int list }->\mathrm{ bool }->\mathrm{ tree
game_tree : tree
let rec next_moves xs os o_is_playing =
    let next =
        if won xs || won os || drawn xs os then [] else
            if o_is_playing
                then
                    List.map
                                    (fun new_os -> next_moves xs new_os (not o_is_playing))
                                    (List.map (fun q -> q :: os) (possibles (xs @ os)))
                else
                    List.map
                                    (fun new_xs -> next_moves new_xs os (not o_is_playing))
                                    (List.map (fun q -> q :: xs) (possibles (xs @ os)))
    in
        Move (xs, os, next)
let game_tree = next_moves [] [] true
```

The game tree is shown in Figure A.3. We can write a simple xwins function to test our new function returns the same result as the original.

```
xwins : tree }->\mathrm{ int
let rec xwins (Move (xs, os, cs)) =
    (if won xs then 1 else 0) +
    List.fold_left ( + ) 0 (List.map xwins cs)
```


Chapter 13 (Representing Documents)

1

Writing T for the trailer dictionary, we have the graph $T \rightarrow 2 \rightarrow 3 \longleftrightarrow 1 \rightarrow 4$.

2

These can be written out by reference to the data structure:

```
val game_tree : tree =
    Move ([], [],
        [Move ([], [1],
            [Move ([2], [1],
                [Move ([2], [3; 1],
                    [Move ([4; 2], [3; 1],
                    [Move ([4; 2], [5; 3; 1],
                                [Move ([6; 4; 2], [5; 3; 1],
                                [Move ([6; 4; 2], [7; 5; 3; 1], []);
                                Move ([6; 4; 2], [8; 5; 3; 1],
                                [Move ([7; 6; 4; 2], [8; 5; 3; 1], []);
                                Move ([9; 6; 4; 2], [8; 5; 3; 1], [])]);
                                Move ([6; 4; 2], [9; 5; 3; 1], [])]);
                                Move ([7; 4; 2], [5; 3; 1],
                                [Move ([7; 4; 2], [6; 5; 3; 1],
                                [Move ([8; 7; 4; 2], [6; 5; 3; 1],
                            [Move ([8; 7; 4; 2], [9; 6; 5; 3; 1], [])]);
                                Move ([9; 7; 4; 2], [6; 5; 3; 1], [])]);
                            Move ([7; 4; 2], [8; 5; 3; 1],
                            [Move ([6; 7; 4; 2], [8; 5; 3; 1], []);
                                Move ([9; 7; 4; 2], [8; 5; 3; 1], [])]);
                            Move ([7; 4; 2], [9; 5; 3; 1], [])]);
                        Move ([8; 4; 2], [5; 3; 1],
                        [Move ([8; 4; 2], [6; 5; 3; 1],
                            [Move ([7; 8; 4; 2], [6; 5; 3; 1],
                            [Move ([7; 8; 4; 2], [9; 6; 5; 3; 1], [])]);
                                    Move ([9; 8; 4; 2], [6; 5; 3; 1], [])]);
                            Move ([8; 4; 2], [7; 5; 3; 1], []);
                            Move ([8; 4; 2], [9; 5; 3; 1], [])]);
                        Move ([9; 4; 2], [5; 3; 1], [])]);
                        .]);
                        ]);
            ...]);
            ..]);
        ...])
```

Figure A. 3

- Name "/Name"
- String "Quartz Crystal"
- Dictionary [("/Type", Name "/ObjStm"); ("/N", Integer 100); ("/First", Integer 807); ("/Last", Integer 1836); ("/Filter", Name "/FlateDecode")]
- Array [Integer 1; Integer 2; Float 1.5; String "black"]
- Array [Integer 1; Indirect 2]

In the last two examples, we assumed integer where appropriate. Notice that in the last example, the parsing is somewhat ambiguous - we would need to read all the way to the R to be sure it was not an array of several integers.

3

Consider the tree Br (Br (Lf, 1, Lf), 2, Br (Lf, 3, Lf)). We will represent it by using nested PDF dictionaries. A branch will have a/Type key with value /Br. It will have /Left and /Right entries for the sub-trees. A leaf is indicated simply by /Lf. In the PDF file we would write it like this:

```
<</Type /Br
    /Value 2
    /Left <</Type /Br /Value 1 /Left /Lf /Right /Lf>>
    /Right <</Type /Br /Value 3 /Left /Lf /Right /Lf>>>>
```

To construct it from our data type in OCaml:

```
let tree =
    Pdf.Dictionary
        [("/Type", Pdf.Name "/Br");
            ("/Value", Pdf.Integer 2);
            ("/Left",
                Pdf.Dictionary
                    [("/Type", Pdf.Name "/Br");
                        ("/Value", Pdf.Integer 1);
                        ("/Left", Pdf.Name "/Lf");
                            ("/Right", Pdf.Name "/Lf")]);
        ("/Right",
            Pdf.Dictionary
                    [("/Type", Pdf.Name "/Br");
                        ("/Value", Pdf.Integer 3);
                            ("/Left", Pdf.Name "/Lf");
                            ("/Right", Pdf.Name "/Lf")])]
```


4

We must search for dictionary entries inside Pdf.Dictionary, of course, but also inside Pdf.Stream, which contains a dictionary, and Pdf. Array which may do so too. Two mutually-recursive functions will do:

```
rotate_90 : Pdf.pdfobject }->\mathrm{ Pdf.pdfobject
rotate_90_dict : string }\times\mathrm{ Pdf.pdfobject }->\mathrm{ string }\times\mathrm{ Pdf.pdfobject
let rec rotate_90 obj =
    match obj with
        Pdf.Array objs ->
            Pdf.Array (List.map rotate_90 objs)
    | Pdf.Dictionary objs ->
            Pdf.Dictionary (List.map rotate_90_dict objs)
    | Pdf.Stream (dict, str) ->
            Pdf.Stream (rotate_90 dict, str)
    | x -> x
and rotate_90_dict (k, v) =
    match k with
        "/Rotate" -> ("/Rotate", Pdf.Integer 90)
    | _ -> (k, rotate_90 v)
```


Chapter 14 Writing Documents)

1

We can alter the functions string_of_array and string_of_dictionary to simply not output the space preceding the closing bracket. To remove the initial space requires a little trick. We inspect the length of the buffer to determine if we are about to output the first item. In that case, no space is written. This is shown in Figure A.4.

2

The full code can be found in the online resources. We make the following changes:

- Change /Count from 1 to 3.
- Move the /Resources to its own object, number 5.
- Write two new pages, objects 6 and 7.
- Write two new page content streams, 8 and 9 .
- Change the /Size from 5 to 10 to account for the new objects.

3

The full code can be found in the online resources. See the hint for a little more help.

Chapter 15 (Pretty Pictures)

1

Since we are working with circles, let us define π :

```
string_of_array : Pdf.pdfobject list }->\mathrm{ string
string_of_dictionary : (string }\times\mathrm{ Pdf.pdfobject) list }->\mathrm{ string
let rec string_of_array a =
    let b = Buffer.create 100 in
        Buffer.add_string b "[";
        List.iter
            (fun s ->
                if Buffer.length b > 1 then Buffer.add_char b ' ';
                Buffer.add_string b (string_of_pdfobject s))
            a;
        Buffer.add_string b "]";
        Buffer.contents b
and string_of_dictionary d =
    let b = Buffer.create 100 in
        Buffer.add_string b "<<";
        List.iter
            (fun (k, v) ->
                if Buffer.length b > 2 then Buffer.add_char b '';
                Buffer.add_string b k;
                Buffer.add_char b ' ';
                Buffer.add_string b (string_of_pdfobject v))
            d;
        Buffer.add_string b ">>";
        Buffer.contents b
```

Figure A. 4

```
pi : float
let pi = 4. *. atan 1.
```

We can write a simple function to return the point at a given angle, distance r from point (x, y) :

```
point : float }->\mathrm{ float }->\mathrm{ float }->\mathrm{ float }->\mathrm{ float }\times\mathrm{ float
let point x y r angle =
    (cos angle *. r +. x, sin angle *. r +. y)
```

Now, we can build a list of all these points, remembering to stop before we have been around the whole circle. The argument step is the angle between successive points.

```
points : float }->\mathrm{ float }->\mathrm{ float }->\mathrm{ float }->\mathrm{ (float }\times\mathrm{ float) list
let points x y r step =
    let n = ref 0
    and points = ref [] in
        while float_of_int !n *. step < 2. *. r *. pi do
            points := point x y r (float_of_int !n *. step) :: !points;
            n := !n + 1
        done;
        !points
```

Finally, we generate a Move to the first points, Lines to the rest, and a final Close.

```
circle : float }->\mathrm{ float }->\mathrm{ float }->\mathrm{ Pdfpage.t list
circle_filled : Pdfpage.t list
let circle x y r =
    match points x y r (pi /. 20.) with
        (x, y)::lines ->
            Pdfpage.Move (x, y) ::
            List.map (fun (x, y) -> Pdfpage.Line (x, y)) lines @
            [Pdfpage.Close]
    | - ->
            assert false the points function should never return an empty list
let circle_filled =
    circle 300. 300. 100. @ [Pdfpage.Fill]
```

For our example, we made a filled circle of radius 100 centred at (300,300) with Pdfpage. Fill:

2

First, a function to build a pseudo-random circle somewhere on our page, making sure to overlap the edges:

```
random_circle : unit }->\mathrm{ Pdfpage.t list
let random_circle () =
    let x = Random.float 700. -. 50.
    and y = Random.float 1000. -. 50.
    and r = Random.float 100. +. 20. in
        circle x y r
```

Now, a little utility function to build a list of n things when given a function which generates them, such as random_circle:

```
many : (unit }->\alpha)->\mathrm{ int }->\alpha\mathrm{ list
let rec many f n =
    match n with
        0 -> []
    | - -> f () :: many f (n - 1)
```

Now it is simple to build a hundred random grey filled circles and append them all together with List. concat:

```
many_circles : Pdfpage.t list
let many_circles =
    List.concat
        (List.map
            (fun l ->
            List.append
                (Pdfpage.FillColour (Random.float 1.) :: l)
                [Pdfpage.Fill])
            (many random_circle 100))
```


3

We can add FillColourRGB of float $*$ float $*$ float and StrokeColourRGB of float $*$ float $*$ float to the data type and associated functions, and then modify our previous example:

```
many_circles_colour : Pdfpage.t list
let many_circles_colour =
    List.concat
        (List.map
            (fun l ->
            List.append
                (Pdfpage.FillColourRGB
                    (Random.float 1., Random.float 1., Random.float 1.)
                                    :: l)
                [Pdfpage.Fill])
            (many random_circle 100))
```

If you are reading the PDF ebook version of this book, the following image is in colour:

4

We add LineWidth of float to the data type and associated functions. Now we set the line width and stroke colour and draw the large circle:

```
big_circle : Pdfpage.t
circle_over_circles : Pdfpage.t
let big_circle =
        [Pdfpage.LineWidth 5.; Pdfpage.StrokeColour 0.]
    @ circle 300. 400. 150.
    @ [Pdfpage.Stroke]
let circle_over_circles =
    many_circles_colour @ big_circle
```


5

We add SetClip to the data type and associated functions. Then we set the clip before stroking.

```
big_clipping_circle : Pdfpage.t list
clipped : Pdfpage.t list
let big_clipping_circle =
    [Pdfpage.LineWidth 1.; Pdfpage.StrokeColour 0.] @
    circle 300. 400. 150. @
    [Pdfpage.SetClip; Pdfpage.Stroke]
let clipped =
    big_clipping_circle @ many_circles_colour
```

The single path is used both for clipping and for the stroke:

Chapter 16 Adding Text)

1

We can pull out font size, line spacing and margin easily, defining them at the top of the page. The text width is derived from the page width and margin. The maximum number of characters in a line can be calculated using the formula given in the question:

```
let font_size = 10.0
let line_spacing = 1.1
let margin = 40.0
let text_width = page_width -. margin -. margin
let max_chars = int_of_float (text_width /. font_size *. (5. /. 3))
```

We can now insert these new names into typeset_line_at:

```
Pdfpage.SetTextPosition (margin, y);
Pdfpage.SetFontAndSize ("/F0", font_size);
```

We pass max_chars to clean_lines and alter our call to downfrom:

```
let ls = clean_lines (lines max_chars words) in
```

```
downfrom
    (font_size *. line_spacing)
    (page_height -. margin -. line_spacing) (List.length ls) 0
```

Here is an example of the new program, with text typeset on a much smaller page (it runs off the bottom, of course):

One morning, when Gregor Samsa woke from troubled dreams, he found himself transformed in his bed into a horrible vermin. He lay on his armour-like back, and if he lifted his head a little he could see his brown belly, slightly domed and divided by arches into stiff sections. The bedding was hardly able to cover it and seemed ready to slide off any moment. His many legs, pitifully thin compared with the size of the rest of him, wave about helplessly as he looked
thour happern't a dream.
thought. proper human room. His a little too small, lay peacefully between its four familiar walls. A collection of textile samples lay spread out on the table - Samsa was a travelling salesman - and above it there hung a picture that he had recently cut out of an illustrated

2

We can implement this by manually inserting space characters into the buffer in lines_inner following every newline (i.e. at the beginning of the second and subsequent paragraphs). This is shown in Figure A.5. Notice the use of an optional argument in lines. We can now alter one line in typeset_page:

```
let ls = clean_lines (lines max_chars ~indent:8 words) in
```

The result is shown in Figure A.6.

3

The page height can be calculated easily:

```
let text_height = page_height -. margin -. margin
```

Now, we can use Pdfpage. SetCharacterSpacing in typeset_line_at, adding an extra argument for the spacing:

```
lines_inner : Pdfpage.t list
lines : float }->\mathrm{ ? ? indent:int }->\mathrm{ string list }->\mathrm{ string list list
let rec lines_inner ls b width indent words =
    match words with
        [] ->
            if Buffer.length b > 0 then
                List.rev (Partial (Buffer.contents b) :: ls)
            else
                List.rev ls
    | "\n"::t ->
            let b' = Buffer.create width in
                for x = 1 to indent do Buffer.add_char b' ' ' done;
                    lines_inner
                            (Partial (Buffer.contents b) :: ls) b' width indent t
        word::t ->
            if Buffer.length b = 0 String.length word > width then
                    lines_inner
                    (Full word :: ls) (Buffer.create width) width indent t
            else if String.length word + Buffer.length b < width then
                    begin
                    Buffer.add_string b word;
                    if Buffer.length b < width then Buffer.add_char b ' ';
                    lines_inner ls b width indent t
                    end
            else
                lines_inner
                    (Full (Buffer.contents b) :: ls)
                    (Buffer.create width) width indent (word :: t)
let lines width ?(indent=0) words =
    lines_inner [] (Buffer.create width) width indent words
```

Figure A. 5

One morning, when Gregor Samsa woke from troubled dreams, he found himself transformed in his bed into a horrible vermin. He lay on his armour-like back, and if he lifted his head a little he could see his brown belly, slightly domed and divided by arches into stiff sections. The bedding was hardly able to cover it and seemed ready to slide off any moment. His many legs, pitifully thin compared with the size of the rest of him, waved about helplessly as he looked.
"What's happened to me?" he thought. It wasn't a dream. His room, a proper human room although a little too small, lay peacefully between its four familiar walls. A collection of textile samples lay spread out on the table - Samsa was a travelling salesman - and above it there hung a picture that he had recently cut out of an illustrated magazine and housed in a nice, gilded frame. It showed a lady fitted out with a fur hat and fur boa who sat upright, raising a heavy fur muff that covered the whole of her lower arm towards the viewer.

Gregor then turned to look out the window at the dull weather. Drops of rain could be heard hitting the pane, which made him feel quite sad. "How about if I sleep a little bit longer and forget all this nonsense", he thought, but that was something he was unable to do because he was used to sleeping on his right, and in his present state couldn't get into that position. However hard he threw himself onto his right, he always rolled back to where he was. He must have tried it a hundred times, shut his eyes so that he wouldn't have to look at the floundering legs, and only stopped when he began to feel a mild, dull pain there that he had never felt before.
"Oh, God", he thought, "what a strenuous career it is that I've chosen! Travelling day in and day out. Doing business like this takes much more effort than doing your own business at home, and on top of that there's the curse of travelling, worries about making train connections, bad and irregular food, contact with different people all the time so that you can never get to know anyone or become friendly with them. It can all go to Hell!" He felt a slight itch up on his belly; pushed himself slowly up on his back towards the headboard so that he could lift his head better; found where the itch was, and saw that it was covered with lots of little white spots which he didn't know what to make of and when he tried to feel the place with one of his legs he drew it quickly back because as soon as he touched it he was overcome by a cold shudder.

He slid back into his former position. "Getting up early all the time", he thought, "it makes you stupid. You've got to get enough sleep. Other travelling salesmen live a life of luxury. For instance, whenever I go back to the guest house during the morning to copy out the contract, these gentlemen are always still sitting there eating their breakfasts. I ought to just try that with my boss; I'd get kicked out on the spot. But who knows, maybe that would be the best thing for me. If I didn't have my parents to think about I'd have given in my notice a long time ago, I'd have gone up to the boss and told him just what think, tell him everything I would, let him know just what I feel. He'd fall right off his desk! And it's a funny sort of business to be sitting up there at your desk, talking down at your subordinates from up there, especially when you have to go right up close because the boss is hard of hearing. Well, there's still some hope; once I've got the money together to pay off my parents' debt to him another five or six years I suppose - that's definitely what I'll do. That's when I'll make the big change. First of all though, I've got to get up, my train leaves at five."

Figure A. 6

```
typeset_line_at : float }->\mathrm{ string }->\mathrm{ float }->\mathrm{ Pdfpage.t list
let typeset_line_at spacing line y =
    [Pdfpage.BeginText;
        Pdfpage.SetCharacterSpacing spacing;
    Pdfpage.SetTextPosition (margin, y);
    Pdfpage.SetFontAndSize ("/F0", font_size);
    Pdfpage.ShowText line;
    Pdfpage.EndText]
```

The spacing is calculated as prescribed, only for Full lines:

```
calculate_spacing : float }->\mathrm{ string }->\mathrm{ float
let calculate_spacing width line =
    match line with
        Full s ->
        float (width - String.length s) /.
        float (String.length s - 1) *. font_size *. (3. /. 5.)
    | Partial s -> 0.
```

In a revised typeset_page, we can calculate the correct spacings, passing them to typeset_line_at:

```
typeset_page : string }->\mathrm{ Pdfpage.t list
let typeset_page text =
    let words = words_of_input (Input.input_of_string text) in
    let ls = lines max_chars ~indent:8 words in
    let spacings = List.map (calculate_spacing max_chars) ls in
    let positions =
        downfrom
            (font_size *. line_spacing)
            (page_height -. margin -. line_spacing) (List.length ls) 0
    in
        List.concat
            (List.map3
                typeset_line_at spacings (clean_lines ls) positions)
```

Here is an example page. You can see that the lines are fully justified - flush to the left and right margins.

One morning, when Gregor Samsa woke from troubled dreams, he found himself transformed in his bed into a horrible vermin. He lay on his armour-like back, and if he lifted his head a little he could see his brown belly, slightly domed and divided by arches into stiff sections. The bedding was hardly able to cover it and seemed ready to slide off any moment. His many legs, pitifully thin compared with the size of the rest of him, waved about helplessly as he looked.
"What's happened to me?" he thought. It wasn't a dream. His room, a proper human room although a little too small, lay peacefully between its four familiar walls. A collection of textile samples lay spread out on the table - Samsa was a travelling salesman - and above it there hung a picture that he had recently cut out of an illustrated magazine and housed in a nice, gilded frame. It showed a lady fitted out with a fur hat and fur boa who sat upright, raising a heavy fur muff that covered the whole of her lower arm towards the viewer.

Gregor then turned to look out the window at the dull weather. Drops of rain could be heard hitting the pane, which made him feel quite sad. "How about if I sleep a little bit longer and forget all this nonsense", he thought, but that was something he was unable to do because he was used to sleeping on his right, and in his present state couldn't get into that position. However hard he threw himself onto his right, he always rolled back to where he was. He must have tried it a hundred times, shut his eyes so that he wouldn't have to look at the floundering legs, and only stopped when he began to feel a mild, dull pain there that he had never felt before.
"Oh, God", he thought, "what a strenuous career it is that I've chosen! Travelling day in and day out. Doing business like this takes much more effort than doing your own business at home, and on top of that there's the curse of travelling, worries about making train connections, bad and irregular food, contact with different people all the time so that you can never get to know anyone or become friendly with them. It can all go to Hell!" He felt a slight itch up on his belly; pushed himself slowly up on his back towards the headboard so that he could lift his head better; found where the itch was, and saw that it was covered with lots of little white spots which he didn't know what to make of ; and when he tried to feel the place with one of his legs he drew it quickly back because as soon as he touched it he was overcome by a cold shudder.

He slid back into his former position. "Getting up early all the time", he thought, "it makes you stupid. You've got to get enough sleep. Other travelling salesmen live a life of luxury. For instance, whenever I go back to the guest house during the morning to copy out the contract, these gentlemen are always still sitting there eating their breakfasts. I ought to just try that with my boss; I'd get kicked out on the spot. But who knows, maybe that would be the best thing for me. If I didn't have my parents to think about I'd have given in my notice a long time ago, I'd have gone up to the boss and told him just what I think, tell him everything I would, let him know just what I feel. He'd fall right off his desk! And it's a funny sort of business to be sitting up there at your desk, talking down at your subordinates from up there, especially when you have to go right up close because the boss is hard of hearing. Well, there's still some hope; once I've got the money together to pay off my parents' debt to him another five or six years I suppose - that's definitely what I'll do. That's when I'll make the big change. First of all though, I've got to get up, my train leaves at five."

The answer to this question is too long to be contained in the text. Consult the online resources for the program itself. An example multi-page output is shown in Figure A.7.

One morning, when Gregor Samsa woke from troubled dreams, he found himself vermin. He lay on his armour-like back, and if he lifted his head a little he could see his brown belly, slightly
domed and divided by arches into stiff sections. The bedding was hardly able to cover it and seemed ready to slide off any moment. His many legs, pitifully thin compared with the size of the rest
of him, waved about helplessly as he looked.
"what's happened to me?" he thought. "It wasn't a dream. His row rom, a
proper human room although a little too small, hay peacefully between its four samples lay spread out on the tablieSamsa was a travelling salesman - and above it there hung a picture that he
magazine and housed in a nice, gilded frame. It showed a lady fitted out with raising a heavy fur muff that covered the whole of her lower arm towards the viewer Gregor then turned to look out the window at the dull weather. Drops of rain could be heard hitting the pane, which made him feel quite sad. "How forget all this nonsense", he thought, but that was something he was unable to do because he was used to sleeping on couldn't get into that position. However hard he threw himself onto his right, he always rolled back to where he was. He
must have tried it a hundred times, shut his eyes so that he wouldn't have to
look at the floundering legs, and only look at the floundering legs, and only
stopped when he began to feel a mild,
one of his legs he drew it quickly back
because as soon as he touched it he was overcome by a cold shudder.
slid back into his former position. "Getting up early all the
time", he thought, "it makes you stupid. You've got to get enough sleep. Other travelling salesmen live a life of to the guest house during the morning to copy out the contract, these gentlemen are always still sitting there eating their breakfasts. I ought to just try the spot. But who knows, maybe that would be the best thing for me. If I didn't have my parents to think about ago, I'd have gone up to the boss and told him just what I think, tell him everything I would, let him know just
what I feel. He'd fall right off his
desk! And it's a funny sort of business to be sitting up there at your desk, up there, especially when you have to go
right up close because the boss is hard of hearing. Well, there's still some tope; once I've got the money together
to pay off my parents' debt to him another five or six years I suppose when I'll make the big change. First of all though, I've got to get up, my train

Figure A. 7

Hints for Questions

Chapter 1
 Unravelling "Fold"

1

What must the accumulator start at? What operation must we perform each time? Consider the sum function from the text as a starting point.

2

We need to ignore each element, just incrementing an accumulator when we see each one. The final value of the accumulator will then be the length of the list. What is the initial accumulator?

3

A good way to deal with the fact that an empty list has no last element would be to return an option type.

4

These sorts of folds producing lists have an accumulator which is a list type - you might start at the empty list.

5

The type will be the same as for List.mem. How do we keep track of whether or not we have seen a matching element? What is the initial accumulator?

6

This will involve a string accumulator and the string concatenation operator. How to we ensure there is not an excess space before or after the sentence?

7
The built-in max operator returns the larger of two values.

8

You can use the Standard Library function Unix.gettimeofday to help time the functions.

Chapter 2

Being Lazy

1

This is very similar to lseq in the text.

2

Construct by analogy to the same function on ordinary lists. Remember one needs to force evaluation to get at the tail.

3

How do we know when we have reached the end of the input list and must start again? What do we do if the input list is empty?

4

Consider the definition of fibonacci numbers. Split into a function which builds the lazy list given two numbers, and the construction of the list itself.

5

The type of the function will be α lazylist $\rightarrow \alpha$ lazylist $\times \alpha$ lazylist. You will need to force the evaluation of the tail of the input list twice to yield the heads of the two output lists, and then work out how to produce the tails.

6

Write a function which builds the alphabetic string from a number. Then, some of the generic lazy list handling functions from the text can be used to build the lazy list itself.

Chapter 3

Named Tuples with Records

1

What is a reference really?

2

Look at the functions Unix.time and Unix.localtime. You will need to deal with conversion of day-of-week and month from integers to strings yourself, but this is not difficult.

4

Records types can be parametrized, just like other data types.

5

See the documentation for a) Gc.stat and b Gc.set and Gc.get.

Chapter 4

Generalized Input/Output

1
A simple modification of input_of_string.

2

Use a Buffer.t to accumulate the characters.

3

The new field will have type unit \rightarrow char option.

4

The new field will have type unit \rightarrow int. For input_of_channel and input_of_string, use exception handling to return the special value. Consider giving the special value -1 a name.

5

Check for a newline character on each input_char, raising End_of_file. Can you use input_string with the new channel you have created to return the user input?

6

The Buffer module already contains ideal functions for this.

Chapter 5
 Streams of Bits

1

What is the test for being able to read a whole byte at a time? What do we do if the condition is met? If it is not?

2

Just replace the integer functions with ones from the Int32 module.

3

What is the test for being able to write a whole byte at a time? What do we do if the condition is met? If it is not?

4

Just replace the integer functions with ones from the Int32 module.

5

Try adding a rewind method to your output type, which goes back one byte. Now extend output_of_string appropriately.

Chapter 6

Compressing Data

1

Use list processing functions over a list of integers representing the data. For testing purposes, re-use our int_list_of_string and string_of_int_list functions.

2

Carefully define a suitable data type for the tree the data will all be at the fringes of the tree, since no code is a prefix of another. Write a function to add a code to the tree. Now, repeated insertion can be used to build the whole tree.

4

We can re-use the read_up_to function, building up two histograms - one for white runs and one for black runs.

Chapter 7

Labelled and Optional
Arguments

1

Consider what happens if α is int.

2

Perhaps define one or more new types.

3

Consider which functions have two or more arguments of the same type. We can add labels to those arguments only and wrap the function up.

4

We can use an optional argument for the accumulator.

Chapter 8

Formatted Printing

1

Consider Printf.bprintf as a way to accumulate the parts. What is special about the last element? What if there is no last element?

2

There is a format specifier for hexadecimal numbers. Consider what happens with very small character codes.

Chapter 9
 Searching for Things

1

The at function from the chapter may be re-used here, in both parts of the question.

2

Start by writing a function which gives the length of the longest prefix of a pattern at the beginning of a list. Now wrap it in another which works through the whole list.

3

The expression Unix.gettimeofday () gives a floating-point number representing the current time.

4

Add a case to the inner match. It must manually check the next letter in the pattern matches the next letter in the string (if it exists).

5

This does not require altering the search code itself one can just preprocess the pattern and string. There is a function String . uppercase in the Standard Library.

Chapter 10
 Finding Permutations

1

What is the base case? For the main case, first calculate the combinations of the tail by recursion. What can you do now?

2

You can build this from functions we have already written.

3

What is the base case? You will need to keep a counter to make sure we only generate lists of the given length.

4

Consider using the swap function we defined in the main text.

5

Instead of using indices for the "first" and "last", use the values themselves. Pull the list representing the old permutation apart, and rearrange it until you have the next.

Chapter 11
 Making Sets

1

In the documentation for the Gc module, you will find the function Gc. counters and a description of how to calculate the total amount of memory allocated since the program began.

2

Add a union function to the signature, with the type $\alpha \mathrm{t} \rightarrow \alpha \mathrm{t} \rightarrow \alpha \mathrm{t}$ and then a union function to the struct for each set representation.

3

You can include the given code inside the structure of the new module. Now, you can set the type t to be equal to S.t, the type of these new sets.

4

Alter the type first. The changes to each function then follow relatively easily.

Chapter 12 Playing Games

1

We already have code to find the number of X wins. What are the conditions for a game being drawn?

2

It is only necessary to alter the type tree and the function next_moves, and only a little. Now we need a function to extract the part of the tree which begins with O in the centre slot. Once we have this, simple modifications of our functions for counting wins and draws will do the job.

3

There is no need to worry about the order of the numbers in the square - the tree will have the same essential characteristics regardless.

Chapter 13

Representing Documents

3

A structure built from nested dictionaries would be suitable.

4

Consider everywhere a dictionary entry might appear. The function or functions will be recursive, following the general pattern of the data structure.

Chapter 14
 Writing Documents

1

Removing the space at the end is simple. How can we detect if we are about to output the first item, and thus do not want a space?

2

Remember to alter the /Size entry, and to change /Indirect entries as required to reflect the new structure.

3

For the content stream in the "Hello, World!" file, one long row is sufficient. However, when encoding other example content streams, consult the PDF specification to ensure the file is still valid. To test, open in your favourite PDF reader.

Chapter 15

Pretty Pictures

1

We need to generate a set of points on the circle, and then they can be built into a path with Move, Line, and Close. This path can then be used with Fill to build the final page content.

2

First write a function to generate a path for a pseudorandom circle using a function we have previously written. Now FillColour and Fill can be added for each one, and the final list of operators produced.

3

We add FillColourRGB and StrokeColourRGB items to the data type and its associated functions. Then we can substitute them into the previous answer.

Chapter 16

Adding Text

1

You need to alter typeset_line_at, clean_lines, and downfrom once you have defined the new values.

2

Try just adding eight space characters after each new line in lines_inner.

3

If there are n characters, we must insert $n-1$ pieces of space between them, each of equal size.

4

To make the construction of the multipage document simpler, consider choosing carefully the order (and hence numbering) of the objects in the file.

Coping with Errors

It is very hard to write even small programs correctly the first time. An unfortunate but inevitable part of programming is the location and fixing of mistakes. OCaml has a range of messages to help you with this process.

Here are descriptions of the common messages OCaml prints when a program cannot be accepted or when running it causes a problem (a so-called "run-time error"). We also describe warnings OCaml prints to alert the programmer to a program which, though it can be accepted for evaluation, might contain mistakes.

ERRORS

These are messages printed when an expression could not be accepted for evaluation, due to being malformed in some way. No evaluation is attempted. You must fix the expression and try again.

Syntax error

This error occurs when OCaml finds that the program text contains things which are not valid words (such as if, let etc.) or other basic parts of the language, or when they exist in invalid combinations - this is known as syntax. Check carefully and try again.

OCaml
\#1 +; ;
Error: syntax error
OCaml has underlined where it thinks the error is. Since this error occurs for a wide range of different mistakes and problems, the underlining may not pinpoint the exact position of your mistake.

Unbound value ...

This error occurs when you have mentioned a name which has not been defined (technically "bound to a value"). This might happen if you have mistyped the name.

```
# x + 1;;
Error: Unbound value x
```

In our example x is not defined, so it has been underlined.

This expression has type ... but an expression was expected of type...

You will see this error very frequently. It occurs when the expression's syntax is correct (i.e. it is made up of valid words and constructs), and OCaml has moved on to type-checking the expression prior to evaluation. If there is a problem with type-checking, OCaml shows you where a mismatch between the expected and actual type occurred.

```
    OCaml
# 1 + true;;
Error: This expression has type bool but an expression was expected of type
    int
```

In this example, OCaml is looking for an integer on the right hand side of the + operator, and finds something of type bool instead.

It is not always as easy to spot the real source of the problem, especially if the function is recursive. Nevertheless, a careful look at the program will often shine light on the problem - look at each function and its arguments, and try to find your mistake.

This function is applied to too many arguments

Exactly what it says. The function name is underlined.
OCaml

```
# let f x = x + 1;;
val f : int -> int = <fun>
# f x y;;
Error: This function is applied to too many arguments;
maybe you forgot a `;'
```

The phrase "maybe you forgot a ';' " applies to imperative programs where accidently missing out a ';' between successive function applications might commonly lead to this error.

Unbound constructor ...

This occurs when a constructor name is used which is not defined.

OCaml

```
# type t = Roof | Wall | Floor;;
```

```
type t = Roof | Wall | Floor
# Window;;
Error: Unbound constructor Window
```

OCaml knows it is a constructor name because it has an initial capital letter.

The constructor . . . expects . . . argument(s), but is applied here to ... argument(s)

This error occurs when the wrong kind of data is given to a constructor for a type. It is just another type error, but we get a specialized message.

OCaml

```
# type p = A of int | B of bool;;
type p = A of int | B of bool
# A;;
Error: The constructor A expects 1 argument(s),
    but is applied here to 0 argument(s)
```


Run-Time Errors

In any programming language powerful enough to be of use, some errors cannot be detected before attempting evaluation of an expression (until "run-time"). The exception mechanism is for handling and recovering from these kinds of problems.

Stack overflow during evaluation (looping recursion?)

This occurs if the function builds up a working expression which is too big. This might occur if the function is never going to stop because of a programming error, or if the argument is just too big.

OCaml

```
# let rec f x = 1 + f (x + 1);;
val f : int -> int = <fun>
# f 0;;
Stack overflow during evaluation (looping recursion?).
```

Find the cause of the unbounded recursion, and try again. If it is really not a mistake, rewrite the function to use an accumulating argument (and so, to be tail recursive).

Exception: Match_failure ...

This occurs when a pattern match cannot find anything to match against. You would have been warned about this possibility when the program was originally entered. For example, if the following function f were defined as
let $\mathrm{f} x=$ match x with 0 -> 1
then using the function with 1 as an argument would produce:
OCaml

```
# f 1;;
Exception: Match_failure ("//toplevel//", 1, 10).
```

In this example, the match failure occurred in the top level (i.e. the interactive OCaml we are using), at line one, character ten.

Exception: ...

This is printed if an un-handled exception reaches OCaml.

```
    OCaml
# exception Exp of string;;
exception Exp of string
# raise (Exp "Failed");;
Exception: Exp "Failed".
```

This can occur for built-in exceptions like Division_by_Zero or Not_found or ones the user has defined like Exp above.

WARNINGS

Warnings do not stop an expression being accepted or evaluated. They are printed after an expression is accepted but before the expression is evaluated. Warnings are for occasions where OCaml is concerned you may have made a mistake, even though the expression is not actually malformed. You should check each new warning in a program carefully.

This pattern-matching is not exhaustive

This warning is printed when OCaml has determined that you have missed out one or more cases in a pattern match. This could result in a Match_failure exception being raised at run-time.

OCaml

```
# let f x = match x with 0 -> 1;;
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
1
val f : int -> int = <fun>
```

Helpfully, it is able to generate an example of something the pattern match does not cover, so this should give you a hint about what has been missed out. You may ignore the warning if you are sure that, for other reasons, this case can never occur.

This match case is unused

This occurs when two parts of the pattern match cover the same case. In this situation, the second one could never be reached, so it is almost certain the programmer has made a mistake.

OCaml

```
# let f x = match x with _ -> 1 | @ -> 0;;
Warning 11: this match case is unused.
val f : int -> int = <fun>
```

In this case, the first case matches everything, so the second cannot ever match.

This expression should have type unit

Sometimes when writing imperative programs, we ignore the result of some side-effect-producing function. However, this can indicate a mistake.

OCaml

```
# f 1; 2;;
Warning 10: this expression should have type unit.
- : int = 2
```

It is better to use the built-in ignore function in these cases, to avoid this warning:

```
OCaml
```

\# ignore (f 1); 2;

- : int = 2

The ignore function has type $\alpha \rightarrow$ unit. It has no side-effect.

Index

），xi
，ix
＊，xi
．，xi
，ix
，xi
，ix
xi
，ix
．，xi
：，区
＝，xi
ix
， 1 ［1］

accumulator， 2
append，\times
array，xi
array，xi
ArrayLabels， 55
balanced tree， 85
begin，xi
binary search tree， 83
bit stream， 27
bitwise logical AND， 27
bool，ix
Buffer．t， 23
bytecode，xi
CCITT，39
channel， 21
char，ix
close path， 117
close＿in，xi
close＿out，xi
compression，35
cons，区
constructor，区
conversion specification， 57
data
compression， 35
decompression， 35
decompression， 35
delaying evaluation， 11
dictionary order， 74
do，xi
done，xi
end，xi
End＿of＿file，22
exception，区
exception， X
false，ix
fax
compression， 39
decompression， 39
fill path， 117
floating－point number，xi
flush output bit stream， 31
fold，1
over trees， 5
for，xi
forcing evaluation， 10
format string， 57
formatted printing， 57
fun，ix
function，ix
game tree， 93
hash
function， 89
table， 89
Hashtbl， 89
head， x function， 9
identity element， 2
if．．．then．．．else．．．，ix
in＿channel， ，xi
include， 81
input channel， 21
input＿char，xi
int，ix
interface，xi
interleave lazy lists， 12
labelled argument， 51
labelled modules， 55
labels
partial application， 52
lazy list， 9
let，ix
let rec，ix
lexicographic order，74
list， x
list， X
List．fold＿left， 1
List．fold＿right，1
List．map
with fold＿right，3
ListLabels， 55
log，xi
logical shift left， 28
match，区
max＿float，xi
max＿int，ix
min＿float，xi
min＿int，ix
module，xi
module， 81
More，xiii
more-ocaml, xiii
mutable record field, 18
name, ix
native code, xi
noughts and crosses, 93
ocamlc, xi
ocamlopt,xi
raise, x
OPAM, xiii
open_in, xi
open_out,xi
optional argument, 51,53
default value,55
out_channel, xi
output channel,21
output_char, xi
partial application, x
pattern, 63
pattern matching, x
PDF, 101
array, 102
coordinates, 118
dictionary, 102
graphics, 117
indirect reference, 103
name, 102
operand, 117
operator, 117
stream, 103
text, 123
writing, 107
permutation, 71
polymorphic, x
Printf.printf,57
Printf.sprintf,57
punning,52
raise, x
record, 15

$$
\text { field, } 15
$$

Red-Black tree, 85
ref,xi
reference, xi
rewind function, 23
searching, 63
in lists, 63
in strings, 64
set, 79
made from lists, 79
sig, 81
sqrt,xi
Standard Library, xi
standard output, 21
StdLabels,55
string, ix
string, ix
StringLabels, 55
stroke path, 117
struct,81
tail, 区
tail function, 9
tail recursion,73
TCP,29
text
line breaking, 126
showing, 127
splitting into lines, 123
tic-tac-toe, 93
trailer dictionary, 103
true, ix
try, x
tuple, ix
type, x
type, x
typesetting, 123
unit, xi
Util, xiii
while, xi
with, x

