
MORE OCAML Algorithms, Methods & Diversions

In More OCaml John Whitington takes a meandering tour of functional program-
ming with OCaml, introducing various language features and describing some
classic algorithms. The book ends with a large worked example dealing with the
production of PDF files. There are questions for each chapter together with worked
answers and hints.

More OCaml will appeal both to existing OCaml programmers who wish to
brush up their skills, and to experienced programmers eager to explore functional
languages such as OCaml. It is hoped that each reader will find something new, or
see an old thing in a new light. For the more casual reader, or those who are used to
a different functional language, a summary of basic OCaml is provided at the front
of the book.

JOHN WHITINGTON founded a software company which uses OCaml extensively.
He teaches functional programming to students of Computer Science at the
University of Cambridge. His other books include “PDF Explained” (O’Reilly, 2012)
and “OCaml from the Very Beginning” (Coherent, 2013).

MORE OCAML

Algorithms, Methods & Diversions

John Whitington

C O H E R E N T P R E S S

C O H E R E N T P R E S S
Cambridge

Published in the United Kingdom by Coherent Press, Cambridge

© Coherent Press 2014

This publication is in copyright. Subject to statutory
exception no reproduction of any part may take place

without the written permission of Coherent Press.

First published August 2014

A catalogue record for this book is available from the British Library

ISBN 978-0-9576711-1-9 Paperback

by the same author

PDF Explained (O’Reilly, 2012)

OCaml from the Very Beginning (Coherent, 2013)

Contents

Summary of Basic OCaml ix

Our Working Environment xiii

1 Unravelling “Fold” 1

2 Being Lazy 9

3 Named Tuples with Records 15

4 Generalized Input/Output 21

5 Streams of Bits 27

6 Compressing Data 35

7 Labelled and Optional Arguments 51

8 Formatted Printing 57

9 Searching for Things 63

10 Finding Permutations 71

11 Making Sets 79

12 Playing Games 93

GENERATING PDF DOCUMENTS - AN EXTENDED EXAMPLE 98

13 Representing Documents 101

14 Writing Documents 107

15 Pretty Pictures 117

16 Adding Text 123

Answers to Questions 133

Hints for Questions 191

Coping with Errors 197

Index 203

v

Preface

When I wrote “OCaml from the Very Beginning”, the intention was to have a book with no prerequisites –
a bright individual, new to programming, could follow it. Because of this, and for length concerns, plenty
of interesting material had to be omitted. This text, not being constrained in the same way, contains a
variety of topics which require some existing experience with a functional language. Those who have
read the previous text should have no problem with this one. Equally, it should be comprehensible to a
functional programmer familiar with another language such as Standard ML or Haskell. The reader may
need to make occasional reference to the OCaml manual.

There are, typically, two different activities when writing programs larger than a few dozen lines: firstly,
dealing with the challenges of complexity inherent in the problem, by finding appropriate abstraction
mechanisms and, secondly, finding and using the wide range of third-party libraries available for a given
language. Most projects involve a combination of the two. In this text we concentrate wholly on the former,
using nothing other than the OCaml Standard Library. Keeping up with the myriad third-party OCaml
libraries is a task better suited to other media.

The book consists of sixteen short chapters falling broadly into three categories. Some introduce pieces
of OCaml syntax with worked examples. Some survey practical topics such as input/output. Some cover
little diversions or puzzles. The main matter of the book ends with a lengthy worked example: a program
to build PDF files containing computer-generated drawings and text. There are full answers and hints for
all questions in the book, and additional material in the online resources.

Acknowledgments

The quotation in Chapter 6 is taken from ISO-32000 © International Organization for Standardization.
The tables of codes in the same chapter are taken from ITU-T T.30 © International Telecommunication
Union. The presentation of the balancing operation for Red-Black trees in Chapter 11 and its functional
implementation is due to Chris Okasaki, as described in the invaluable “Purely Functional Data Structures”
(Cambridge University Press, ISBN 978-0521663502, 1998). Chapter 12 was inspired by a University of
Cambridge Computer Science Tripos exam question set by Lawrence C. Paulson in 1999. Question 3 of that
chapter is due to Peter D. Schumer in “Mathematical Journeys” (John Wiley & Sons, ISBN 0-471-22066-3,
2004).

I am grateful to the many colleagues and friends with whom I have been able to discuss OCaml style
and substance, including Mark Shinwell, Leo White, Daniel Bünzli, Anil Madhavapeddy, Stephen Dolan
and many others whom I have forgotten. Helpful comments on an earlier draft were provided by Stefan
Schmiedl, Manuel Cornes, Jonas Bülow, Emmanuel Delabode, Mario Alvarez Picallo, Giannis Tsaraias,
Emmanuel Oga, and André Bjärby.

vii

Summary of Basic OCaml

This chapter contains a summary of each OCaml construct used in the book, together with some examples. Pieces of
OCaml syntax not contained in this chapter will be introduced as and when they are needed throughout the rest of
the book. Existing OCaml programmers may skip this chapter.

Simple Data Types

Integers min_int . . . -3 -2 -1 0 1 2 3 . . . max_int
of type int. Booleans true and false of type bool.
Characters of type char like 'X' and '!'.

Mathematical operators + - * / mod which take two
integers and give another.

6 * 2

=⇒ 12

Operators = < <= > >= <> which compare two
values and evaluate to either true or false.

1 + 2 + 3 = 1 * 2 * 3

=⇒ true

The conditional if expression1 then expression2 else
expression3, where expresssion1 has type bool and ex-
pression2 and expression3 have the same type as one
another.

if 4 * 3 > 2 * 2 then 1 else 0

=⇒ 1

The boolean operators && (logical AND) and || (log-
ical OR) which allow us to build compound boolean
expressions.

1 = 2 || 2 = 2

=⇒ true

Tuples to combine a fixed number of elements (a,
b), (a, b, c) etc. with types α × β, α × β × γ

etc. For example, (1, '1') is a tuple of type int ×
char. On the screen, OCaml writes 'a for α etc.

Strings, which are sequences of characters written
between double quotes and are of type string. For
example, "one" has type string.

Names and Functions

Assigning a name to the result of evaluating an ex-
pression using the let name = expression construct.

let x = 5 > 2 x is new, and is false

Building compound expressions using let name1 =
expression1 in let name2 = expression2 in . . .

let x = 4 in let y = 5 in x + y

Anonymous (un-named) functions fun name -> ex-
pression.

(fun x -> x * 2) 4

=⇒ 8

Making operators into functions as in (<) and
(+).

(+) 1 2 =⇒ 3

Functions, introduced by let name argument1 ar-
gument2 . . . = expression. These have type α → β,
α → β → γ etc. for some types α, β, γ etc. For
example, let f a b = a > b is a function of type α
→ α → bool.

Recursive functions, which are introduced in the

ix

same way, but using let rec instead of let. For
example, here is a function g which calculates the
smallest power of two greater than or equal to a
given positive integer, using the recursive function
f:

let rec f x y =
if y < x then f x (2 * y) else y

let g z = f z 1

Mutually recursive functions, introduced by writing
let rec f x = ... and g y = ... and ...

Pattern Matching

Matching patterns using match expression1 with pat-
tern1 | . . . -> expression2 | pattern2 | . . . -> expres-
sion3 |. . . The expressions expression2, expression3 etc.
must have the same type as one another, and this
is the type of the whole match . . . with expression.
The special pattern _ which matches anything.

match x with
0 -> 1

| 1 | 2 -> 3
| _ -> 4

Matching two or more things at once, using commas
to separate as in match a, b with 0, 0 -> expres-
sion1 | x, y -> expression2 | . . .

match x, y, z with
0, 0, 0 -> true

| _, _, _ -> false

Lists

Lists, which are ordered collections of zero or more
elements of like type. They are written between
square brackets, with elements separated by semi-
colons e.g. [1; 2; 3; 4; 5]. If a list is non-empty,
it has a head, which is its first element, and a tail,
which is the list composed of the rest of the ele-
ments.

The :: “cons” operator, which adds an element to
the front of a list. The @ “append” operator, which
concatenates two lists together.

1 :: [2; 3] =⇒ [1; 2; 3]
[1; 2] @ [3] =⇒ [1; 2; 3]

Lists and the :: “cons” symbol may be used for
pattern matching to distinguish lists of length zero,
one, etc. and with particular contents. For example,
we can calculate the length of a list:

let rec length l =
match l with

[] -> 0
| _::t -> 1 + length t

Exceptions

Defining exceptions with exception name. They
can carry extra information by adding of type. Rais-
ing exceptions with raise. Handling exceptions
with try . . . with . . .

exception Problem of int

let f x y =
if y = 0

then raise (Problem x)
else x / y

let g x y =
try f x y with Problem p -> p

Partial Application

Partial application of functions by giving fewer than
the full number of arguments. Partial application
with functions built from operators.

let add x y = x + y

List.map (add 3) [1; 2; 3]
=⇒ [4; 5; 6]

List.map ((+) 3) [1; 2; 3]
=⇒ [4; 5; 6]

New Data Types

New types with type name = constructor1 of type1 |
constructor2 of type2 | . . . Pattern matching on them
as with the built-in types. Polymorphic types.

type colour =
Red | Blue | Green | Grey of int

x

[Red; Blue; Grey 16] this has type colour list

type 'a tree =
Lf

| Br of 'a tree * 'a * 'a tree

For example, Br (Lf, 'X', Br (Lf, 'Y', Lf))
has type char tree. A useful built-in data type
is the option type, defined as type 'a option =
None | Some of 'a. A type can be polymorphic in
more than one type parameter, for example ('a,
'b) Hashtbl.t, as in the Standard Library.

Basic Input / Output

The value () and its type unit. Input channels
of type in_channel and output channels of type
out_channel. Built-in functions such as open_-
in, close_in, open_out, close_out, input_char,
output_char etc. for reading from and writing to
them respectively.

Mutable State

References of type α ref. Building them using ref,
accessing their contents using !and updating them
using the := operator.

let p = ref 0;;
val p : int ref = {contents = 0}
p := 5;;
- : unit = ()
!p;;
- : int = 5

Arrays of type α array written like [|1; 2; 3|].
Creating an array with the built-in function
Array.make, finding its length with Array.length,
accessing an element with a.(subscript). Updating
with a.(subscript) <- expression.

let swap a x y =
let t = a.(x) in

a.(x) <- a.(y); a.(y) <- t

Bracketing expressions together with begin and end
instead of parentheses for readability.

if x = y then
begin

a := b;

c := d
end

else
e := f

Performing an action many times based on a
boolean condition with the while boolean expression
do expression done construct.

while !x < y do x := !x * 2 done

Performing an action a fixed number of times with
a varying parameter using the for name = start to
end do expression done construct.

for x = 1 to 10 do print_int x done

Floating-point Numbers

Floating-point numbers min_float . . . max_float
of type float. Floating-point operators +. *. -. /.

** and built-in functions sqrt log etc.

2. ** 0.2 =⇒ 1.1486983549970351

The OCaml Standard Library

Using functions from the OCaml Standard Li-
brary with the form Module.function. For exam-
ple, List.map, String.length, Array.copy etc.
The Buffer module allows the efficient collation of
strings into larger ones.

Simple Modules

Writing modules in .ml files. Building interfaces
in .mli files with types and the val keyword. For
example, the .ml file with contents let f x = x + 1
might have the interface val f : int -> int

Compiling Programs

The ocamlc and ocamlopt compilers. For example:

ocamlc -o x x.ml builds x (or x.exe) from x.ml
with the bytecode compiler.

ocamlopt -o x x.ml builds x (or x.exe) from x.ml
with the native code compiler.

xi

Our Working Environment

Every piece of code in an example, and every answer to an end-of-chapter question can be downloaded
from the book’s website at http://www.ocaml-book.com/and built on the reader’s machine. The pro-
grams should work on Unix (including Linux), Mac OS X, and Microsoft Windows.

Since several of our programs require tail-recursive list functions, we provide a wrapper to the
Standard Library List module which provides them. In addition, three small utility functions (take, drop,
and from) are provided in a Util module. These modules are contained in the module More. So, by writing
open More, the Util module is available, and all functions in the List module are tail-recursive.

If using OPAM, the OCaml Package Manager, this package may be installed by writing opam install
more-ocaml. Then (or by installing in another manner – see the online resources for details) our modules
are available in the top level:

OCaml

#use "topfind";;
- : unit = ()
Findlib has been successfully loaded. Additional directives:

#require "package";; to load a package
#list;; to list the available packages
#camlp4o;; to load camlp4 (standard syntax)
#camlp4r;; to load camlp4 (revised syntax)
#predicates "p,q,...";; to set these predicates
Topfind.reset();; to force that packages will be reloaded
#thread;; to enable threads

- : unit = ()
#require "more";;
/Users/john/.opam/4.02.0/lib/ocaml/more.cma: loaded
/Users/john/.opam/4.02.0/lib/more: added to search path
open More;;
Util.take;;
- : 'a list -> int -> 'a list = <fun>

They are also available when compiling stand-alone programs with the bytecode compiler ocamlc or the
native code compiler ocamlopt:

ocamlfind ocamlc -package more program.ml -linkpkg -o program
ocamlfind ocamlopt -package more program.ml -linkpkg -o program

Further instructions, including for use on platforms where OPAM is not supported, are given in the online
resources.

xiii

http://www.ocaml-book.com/

Timing with the Unix module

Sometimes we will wish to see how much time a piece of code takes. This can be achieved using the
function gettimeofday from the Unix module (contrary to its name, this module also works on Windows).
This function returns a floating-point number representing the time since 00:00:00 GMT, Jan. 1, 1970, in
seconds:

OCaml

#use "topfind";;
- : unit = ()
Findlib has been successfully loaded. Additional directives:
#require "package";; to load a package
#list;; to list the available packages
#camlp4o;; to load camlp4 (standard syntax)
#camlp4r;; to load camlp4 (revised syntax)
#predicates "p,q,...";; to set these predicates
Topfind.reset();; to force that packages will be reloaded
#thread;; to enable threads

- : unit = ()
#require "unix";;
/Users/john/.opam/4.01.0/lib/ocaml/unix.cma: loaded
Unix.gettimeofday ();;
- : float = 1407679005.43897
Unix.gettimeofday ();;
- : float = 1407679011.08860302

Now, by evaluating Unix.gettimeofday (), running a piece of code, and evaluating Unix.gettimeofday
() once more, we can calculate the elapsed time. To use the Unix module when compiling stand-alone
programs:

ocamlfind ocamlc -package more,unix program.ml -linkpkg -o program
ocamlfind ocamlopt -package more,unix program.ml -linkpkg -o program

xiv

Chapter 1

Unravelling “Fold”

The List module in OCaml’s Standard Library defines two intriguingly-named functions over lists:

fold_left : (α → β → α) → α → β list → α
fold_right : (α → β → β) → α list → β → β

let rec fold_left f a l =
match l with

[] -> a
| h::t -> fold_left f (f a h) t

let rec fold_right f l a =
match l with

[] -> a
| h::t -> f h (fold_right f t a)

What do they do? And why are they considered important enough to include in the Standard Library?
As we shall see, they abstract the idea of recursion over lists with an accumulator in a most delightfully
generic way.

Let us first examine fold_left and its rather complicated type. The first argument is itself a function,
which takes the existing accumulator and an element from the input list, combines them in some fashion,
and returns a new accumulator, ready for the next element. So, in general, the first argument has type α
→ β → α. Then we have an initial value for the accumulator, which must have type α, and an input list
of type β list. The return value is the final accumulator, so that must have type α. We can annotate the
function as follows:

fold_left : (α → β → α) → α → β list → α

let rec fold_left f a l = function, initial accumulator, input list
match l with

[] -> a no more input – return the accumulator
| h::t -> fold_left f (f a h) t apply function to a and h, making new a

1

2 Chapter 1. Unravelling “Fold”

We can find the sum of a list of numbers:

fold_left (+) 0 [1; 2; 3]

=⇒ fold_left (+) 1 [2; 3]

=⇒ fold_left (+) 3 [3]

=⇒ fold_left (+) 6 []

=⇒ 6

Here, α and β are both int. The function (+) has the right type, and we use for the initial accumulator
the identity element for (+) which is 0 since for all x, x+ 0 = x (we cannot take the initial accumulator
from the list itself since our function must have a result for the sum of all the integers in an empty list.)

It might appear to the reader that this is more complicated than the simple recursive solution, but to
the experienced functional programmer, using fold_left is in fact easier to read. Let us find the maximum
number in a list using fold_left:

fold_left max min_int [2; 4; 6; 0; 1]

=⇒ fold_left max 2 [4; 6; 0; 1]

=⇒ fold_left max 4 [6; 0; 1]

=⇒ fold_left max 6 [0; 1]

=⇒ fold_left max 6 [1]

=⇒ fold_left max 6 []

=⇒ 6

Here max is the built-in function for finding the larger of two things, and min_int is the built-in value of
the smallest possible integer. We can use a similar scheme to define functions on lists of booleans:

all : bool list → bool
any : bool list → bool

let all l = fold_left (&&) true l

let any l = fold_left (||) false l

The all function is true if and only if all items in the list are true; the any function if at least one is. What
can happen when α and β are different? How about making the accumulator a list too? We can use
List.mem to turn an arbitrary list into a set by consulting the existing accumulator before putting an
element in:

setify : α list → α list

let setify l =
fold_left (fun a e -> if List.mem e a then a else e :: a) [] l

We are using List.mem to decide whether to add each element to the accumulator or discard it.

Chapter 1. Unravelling “Fold” 3

What about fold_right?

Here is the function again:

fold_right : (α → β → β) → α list → β → β

let rec fold_right f l a =
match l with

[] -> a
| h::t -> f h (fold_right f t a)

The fold_left function applied the given function over the elements in the input list from the left hand
side. In contrast, fold_right processes them from the right, by changing the evaluation order. Consider,
for example, our summation example:

fold_left (+) 0 [1; 2; 3]

=⇒ fold_left (+) 1 [2; 3]

=⇒ fold_left (+) 3 [3]

=⇒ fold_left (+) 6 []

=⇒ 6

fold_right (+) [1; 2; 3] 0

=⇒ (+) 1 (fold_right (+) [2; 3] 0)

=⇒ (+) 1 ((+) 2 (fold_right (+) [3] 0))

=⇒ (+) 1 ((+) 2 ((+) 3 (fold_right (+) [] 0)))

=⇒ (+) 1 ((+) 2 ((+) 3 0))

=⇒ (+) 1 ((+) 2 3)

=⇒ (+) 1 5

=⇒ 6

See how the accumulating of values starts from the right hand side. Note also that fold_right is not
tail-recursive (the intermediate expression it builds is proportional to the size of the input). We can define
map simply as a use of fold_right.

map : (α → β) → α list → β list

let map f l =
fold_right (fun e a -> f e :: a) l []

Who would have thought that fold_right was the more fundamental function? At the cost of a list
reversal, we can make fold_right tail-recursive by defining it in terms of fold_left:

4 Chapter 1. Unravelling “Fold”

fold_right : (α → β → β) → α list → β → β

let fold_right f l e =
fold_left (fun x y -> f y x) e (List.rev l)

Sometimes we want to provide an initial accumulator value which is not the identity element for the
computation. For example, applying :: over an input list with fold_right is not very interesting, yielding
a function which returns a copy of its input:

copy : α list → α list

let copy l =
fold_right (fun e a -> e :: a) l []

But if we supply a non-empty list as the initial value of the accumulator, we have the append function:

append : α list → α list → α list

let append x y =
fold_right (fun e a -> e :: a) x y

We can use a more complicated accumulator, such as a tuple. In this example, we replicate the List.split
function which, given a list of pairs, yields a pair of lists:

split : (α × β) list → α list × β list

let split l =
fold_right

(fun (x, y) (xs, ys) -> (x :: xs, y :: ys))
l
([], [])

For example, split [(1, "one"); (2, "two")] evaluates to ([1; 2], ["one"; "two"]).

A word of caution

One very simple definition for the function concat which concatenates all lists in a list of lists is given by:

concat : α list list → α list

let concat l = fold_left (@) [] l

Chapter 1. Unravelling “Fold” 5

We use the append function to accumulate the lists into a single list one by one:

fold_left (@) [] [[1;2]; [3]; [4;5]]

=⇒ fold_left (@) [1; 2] [[3]; [4; 5]]

=⇒ fold_left (@) [1; 2; 3] [[4; 5]]

=⇒ fold_left (@) [1; 2; 3; 4; 5] []

=⇒ [1; 2; 3; 4; 5]

However, the order of evaluation is such that the append function @ (which takes time proportional to the
length of its first argument) is used inefficiently – we process the list again and again.

Folding over trees

For the usual definition of a binary tree, we can define a fold. There are two accumulators, one for
everything from the left sub-tree, and one for everything from the right sub-tree. The supplied function
combines both into a new accumulator.

fold_tree : (α → β → β → β) → β → α tree → β

type 'a tree =
Lf

| Br of 'a * 'a tree * 'a tree

let rec fold_tree f e t =
match t with

Lf -> e
| Br (x, l, r) -> f x (fold_tree f e l) (fold_tree f e r)

Here is an example tree:

1

6

4

0

which we write as Br (1, Br (0, Lf, Lf), Br (6, Br (4, Lf, Lf), Lf))

Functions for the size of a tree, and the sum of an integer tree are now easy, without explicit recursion:

6 Chapter 1. Unravelling “Fold”

tree_size : α tree → int
tree_sum : int tree → int

let tree_size t = fold_tree (fun _ l r -> 1 + l + r) 0 t

let tree_sum t = fold_tree (fun x l r -> x + l + r) 0 t

The standard tree traversals can be written easily with a list accumulator. A little typographical manipula-
tion shows the pleasing symmetry:

tree_preorder : α tree → α list
tree_inorder : α tree → α list
tree_postorder : α tree → α list

let tree_preorder t = fold_tree (fun x l r -> [x] @ l @ r) [] t
let tree_inorder t = fold_tree (fun x l r -> l @ [x] @ r) [] t
let tree_postorder t = fold_tree (fun x l r -> l @ r @ [x]) [] t

On our example list:

tree_preorder (Br (1, Br (0, Lf, Lf), Br (6, Br (4, Lf, Lf), Lf)))

=⇒ [1; 0; 6; 4]

tree_inorder (Br (1, Br (0, Lf, Lf), Br (6, Br (4, Lf, Lf), Lf)))

=⇒ [0; 1; 4; 6]

tree_postorder (Br (1, Br (0, Lf, Lf), Br (6, Br (4, Lf, Lf), Lf)))

=⇒ [0; 4; 6; 1]

Chapter 1. Unravelling “Fold” 7

Questions

1. Write a function which, given a list of integers representing expenses, removes them from a budget,
again represented by an integer.

2. Calculate the length of a list using one of the fold_ functions.

3. Use one of the fold_ functions to find the last element of list, if any. Behave sensibly if the list is
empty.

4. Write a function to reverse a list, using one of the fold_ functions.

5. Write a version of List.mem using one of the fold_ functions. Now setify can be defined entirely
using folds.

6. Use a fold to write a function which, given a list of non-empty strings representing words, returns a
single string where the words are separated by spaces. Comment on its efficiency.

7. Use fold_tree to write a function which calculates the maximum depth of a tree. What is its type?

8. Compare the time efficiency of one or more of your functions with the system implementation of
the same function (for example, our fold-based member function vs. List.mem) with regard to both
computational complexity and actual time taken.

9. Comment on whether the use of folds in each of Questions 1–7 is good style.

Chapter 2

Being Lazy

We can make our own data type for OCaml’s built-in lists like this:

type 'a list = Nil | Cons of 'a * 'a list

The constructor Nil represents the empty list, and Cons builds a list from a head and a tail. So, for example,
we can write the list [1; 2; 3] as Cons (1, Cons (2, Cons (3, Nil))). It is also possible to define an
infinitely-long list, where elements are only produced when we actually need them. This is known as a
lazy list. Instead of a tail, we use a tail function. This is a function which, when given a unit value, yields
the tail:

type 'a lazylist = Cons of 'a * (unit -> 'a lazylist)

Note that we have no Nil constructor, because the list has no end. Our use of unit rather than another
type is a choice – we could use any type, but unit is the simplest type, containing only one value. How do
we use such a creature? Let us start by writing a function which, given an integer n, builds the lazy list of
all integers n, n+ 1, n+ 2 . . . and returns it:

lseq : int → int lazylist

let rec lseq n =
Cons (n, fun () -> lseq (n + 1))

When we type this in to the OCaml top level, here is what we see:

OCaml

lseq 0;;
- : int lazylist = Cons (0, <fun>)

We can see that the head of the list is zero – the rest is yet to be calculated. OCaml represents the tail
function with <fun>. We can now write functions to extract items from the list. Here are lazy head and tail
functions:

9

10 Chapter 2. Being Lazy

lhd : α lazylist → α
ltl : α lazylist → α lazylist

let lhd (Cons (n, _)) = n

let ltl (Cons (_, tf)) = tf ()

Notice that, because there is only one constructor in our data type, we can pattern match directly in the
function argument. When we apply the unit () to the tail function, we are forcing evaluation of the tail.
Here are lazy versions of the familiar take and drop functions, which take or drop the first n elements of
a list:

ltake : α lazylist → int → α list
ldrop : α lazylist → int → α lazylist

let rec ltake (Cons (h, tf)) n =
match n with
0 -> []

| _ -> h :: ltake (tf ()) (n - 1)

let rec ldrop (Cons (h, tf) as ll) n =
match n with
0 -> ll

| _ -> ldrop (tf ()) (n - 1)

The ltake function has to yield an ordinary list, of course. Note the use of the as keyword to name part
of the pattern (here, Cons (h, tf) is named ll), making the base case of ldrop simpler. Now we can
actually get at our elements:

OCaml

ltake (lseq 0) 20;;
- : int list =
[0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19]
ldrop (lseq 0) 20;;
- : int lazylist = Cons (20, <fun>)

Two favourite list functions have easy analogues in the lazy world:

Chapter 2. Being Lazy 11

lmap : (α → β) → α lazylist → β lazylist
lfilter : (α → bool) → α lazylist → α lazylist

let rec lmap f (Cons (h, tf)) =
Cons (f h, fun () -> lmap f (tf ()))

let rec lfilter f (Cons (h, tf)) =
if f h then

Cons (h, fun () -> lfilter f (tf ()))
else

lfilter f (tf ())

Note that delaying and forcing evaluation often come together, as in both these examples. The function
map returns almost immediately – assuming f is quick. The computation of the rest of the elements is, as
always, delayed. The filter function is different – it must find at least one matching element to use as
the head, before returning. If it does not find one, it will never return, so care is needed. Let us use these
two functions to find the cubes divisible by five:

cubes : int lazylist

let cubes =
lfilter

(fun x -> x mod 5 = 0)
(lmap (fun x -> x * x * x) (lseq 1))

Now, using ltake:

OCaml

ltake cubes 20;;
- : int list =
[125; 1000; 3375; 8000; 15625; 27000; 42875; 64000; 91125; 125000; 166375;
216000; 274625; 343000; 421875; 512000; 614125; 729000; 857375; 1000000]

Here is another example of a simple lazy list, this time the list of all primes, created by use of lfilter and
recursion, beginning with the list of all numbers from 2, calculated with lseq:

mkprimes : int lazylist → int lazylist
primes : int lazylist

let rec mkprimes (Cons (h, tf)) =
Cons (h, fun () ->

mkprimes (lfilter (fun x -> x mod h <> 0) (tf ())))

let primes = mkprimes (lseq 2)

12 Chapter 2. Being Lazy

There are plenty of list functions which cannot be adapted to lazy lists. We cannot, for example, reverse a
lazy list, or append two lazy lists. But there is an analogue to append. We can combine two lists fairly,
taking elements in turn from each:

interleave : α lazylist → α lazylist → α lazylist

let rec interleave (Cons (h, tf)) l =
Cons (h, fun () -> interleave l (tf ()))

For example, the list alternating between zeros and ones can be built with interleave and a function to
build constant lists:

lconst : int → int lazylist
interleaved : int lazylist

let rec lconst n =
Cons (n, fun () -> lconst n)

let interleaved =
interleave (lconst 0) (lconst 1)

A more interesting example is to calculate the lazy list of all ordinary lists of zeros and ones. We can do
this by prepending a zero and a one to the list, and interleaving the resulting lists:

allfrom : int list → int list lazylist
allones : int list lazylist

let rec allfrom l =
Cons (l, fun () ->

interleave (allfrom (0 :: l)) (allfrom (1 :: l)))

let allones = allfrom []

This yields:

OCaml

ltake allones 20;;
- : int list list =
[[]; [0]; [1]; [0; 0]; [0; 1]; [1; 0]; [1; 1]; [0; 0; 0]; [0; 0; 1];
[0; 1; 0]; [0; 1; 1]; [1; 0; 0]; [1; 0; 1]; [1; 1; 0]; [1; 1; 1];
[0; 0; 0; 0]; [0; 0; 0; 1]; [0; 0; 1; 0]; [0; 0; 1; 1]; [0; 1; 0; 0]]

To see why, we can visualise the evaluation as a tree where each left branch prepends a zero and each right
branch a one:

Chapter 2. Being Lazy 13

[]

[1]

[1; 1][0; 1]

[0]

[1; 0][0; 0]

The interleavings are fair, and the interleavings of interleavings equally so, thus we see the results of
length two in this order: [0; 0] [0; 1] [1; 0] [1; 1].

14 Chapter 2. Being Lazy

Questions

1. Write the lazy list whose elements are the numbers 1, 2, 4, 8, 16 . . . What is its type?

2. Write a function to return the nth element of a lazy list where element zero is the head of the list.

3. Write a function which, given a list, returns the lazy list forming a repeated sequence taken
from that list. For example, given the list [1; 2; 3] it should return a lazy list with elements
1, 2, 3, 1, 2, 3, 1, 2 . . .

4. Write a lazy list whose elements are the fibonacci numbers 0, 1, 1, 2, 3, 5, 8 . . . whose first two
elements are zero and one by definition, and each ensuing element is the sum of the previous two.

5. Write the function unleave which, given a lazy list, returns two lazy lists, one containing elements
at positions 0, 2, 4, 6 . . . of the original list, and the other containing elements at positions 1, 3, 5, 7 . . .

6. Alphanumeric labels in documents goA,B,C, . . . ,X, Y, Z,AA,AB, . . . , BA,BB, . . . AAA, . . . Write
the lazy list containing strings representing this sequence.

Chapter 3

Named Tuples with Records

Tuples can be used to combine a fixed number of elements of same or differing types. However, once
we have more than two or three items, remembering the order can be difficult, especially if the types of
the items are the same. Records remedy this, allowing us to name each item. Due to this naming, they
have several other useful properties which distinguish them from tuples. Let us define a simple type for
cartesian coordinates in two dimensions:

type point = {x : float; y : float}

Records are like tuples with labels. We write them between braces { }. Each element of the record (called
a field) has a name and a type, and the fields are separated with semicolons. We can construct a value of
this type using the same syntax, but with the equals sign in place of the colons:

let p = {x = 4.5; y = 6.0}

We can add another field to the record, a label for the point:

type point = {x : float; y : float; label : string}

We can parametrize it just like a list or variant data type:

type 'a point =
{x : float;
y : float;
label : string;
content : 'a}

So now we can have values of type int point and string point and so on. We can define one directly:

15

16 Chapter 3. Named Tuples with Records

p : int list point
make_point : float → float → string → α → α point

let p =
{x = 4.5;
y = 6.0;
label = "P";
content = [1; 3; 1]}

let make_point x y l c =
{x = x; y = y; label = l; content = c}

Notice that frequently we write something like x = x in a record definition, as in make_point here. This
can be shortened to just x, and by doing so for all the arguments in make_point we obtain this simpler
definition:

make_point : float → float → string → α → α point

let make_point x y label content =
{x; y; label; content}

Having built record values, we now need to know how to extract the individual parts. We can use the dot
notation, writing record.field like so:

string_of_point : α point → string

let string_of_point p =
p.label
^ " = ("
^ string_of_float p.x
^ ", "
^ string_of_float p.y
^ ")"

Alternatively, we can use record syntax in patterns, here in the argument itself:

string_of_point : α point → string

let string_of_point {label = l; x = x; y = y} =
l
^ " = ("
^ string_of_float x
^ ", "
^ string_of_float y
^ ")"

Chapter 3. Named Tuples with Records 17

Notice we only had to include in the pattern the parts of the record we intended to use. This can, optionally,
be made more explicit by adding the wildcard _ to the pattern:

string_of_point : α point → string

let string_of_point {label = l; x = x; y = y; _} =
l
^ " = ("
^ string_of_float x
^ ", "
^ string_of_float y
^ ")"

Finally, we can use the shorthand record form in patterns too:

string_of_point : α point → string

let string_of_point {label; x; y; _} =
label
^ " = ("
^ string_of_float x
^ ", "
^ string_of_float y
^ ")"

Where we need a copy of a record with just one or more fields changed, we can use the with keyword:

relabel : α point → string → α point

let relabel p l = {p with label = l}

Again, the shortened form can help:

relabel : α point → string → α point

let relabel p label = {p with label}

Here is a function to reflect a point about the line x = y:

mirror : α point → α point

let mirror p = {p with x = p.y; y = p.x}

18 Chapter 3. Named Tuples with Records

Mutable records

Individual fields of a record can be made mutable (their value may be changed – literally mutated), by use
of the mutable keyword:

type 'a point =
{x : float;
y : float;
label : string;
mutable content : 'a}

In fact, OCaml’s reference type is just a record with a single, mutable field:

OCaml

let x = ref 0;;
- : int ref = { contents = 0 }

Here, the type ref is defined by type 'a ref = {mutable contents : 'a} and the constructor function
ref is of type α → α ref. The value of a mutable field can be updated using the <- symbol like this:

OCaml

type 'a point = {x : float; y : float; label : string; mutable content : 'a};;
type 'a point = {
x : float;
y : float;
label : string;
mutable content : 'a;

}

let p = {x = 4.5; y = 6.0; label = "P"; content = [1; 3; 1]};;
val p : int list point = {x = 4.5; y = 6.; label = "P"; content = [1; 3; 1]}

p.content <- [1];;
- : unit = ()

p;;
- : int list point = {x = 4.5; y = 6.; label = "P"; content = [1]}

Such records should be used with care, like any mutable feature, especially if they are likely to be used as
part of a larger data structure.

Chapter 3. Named Tuples with Records 19

Questions

1. Show how to update a reference without using the := operator.

2. Using functions from the “Time Functions” section of the documentation to the Unix module, write
a program which, when run, returns a string containing the time and date, for example "It is
2:45 on Wednesday 8 January 2014".

3. What is the difference between type t = {x : int ref} and type t = {mutable x : int}? What
are the advantages and disadvantages of each?

4. Define a record of six items a...f where a and b have the same type as one another, c and d have the
same type as one another and e and f have the same type as one another.

5. Records are used in the module Gc which controls OCaml’s garbage collector (a garbage collector
is a system which automatically reclaims space the program has finished with as the program is
running). Use the data structures and functions in the Gc module to write programs which:

(a) write a summary of the state of the garbage collector to a text file; and

(b) alter the verbosity of the garbage collector as defined in the control record.

Chapter 4

Generalized Input/Output

In Pervasives, OCaml’s default always-opened module, a number of functions are defined over input
and output channels – representing both files in the file system and special ones such as standard output.
However, it is often useful to have a more general abstraction of input and output over, for example,
strings and arrays, as well as files and channels.

In this chapter, we shall develop such an abstraction, giving input and output types which work with
OCaml channels and strings. It can be extended to work over other data structures, and to have more
complete functionality – some of the questions at the end of the chapter involve such extensions.

A type for inputs

The fundamental operations on an input, once it has been created, will be:

• finding the current position;

• setting the current position;

• reading a character, at the same time advancing the position;

• finding the length of an input.

We need a way to group them together, and to refer to them easily. A record is ideal:

type input =
{pos_in : unit -> int;
seek_in : int -> unit;
input_char : unit -> char;
in_channel_length : int}

Now we can build an input from an OCaml in_channel easily (we have re-used some of the standard
OCaml names):

21

22 Chapter 4. Generalized Input/Output

input_of_channel : in_channel → input

let input_of_channel ch =
{pos_in = (fun () -> pos_in ch);
seek_in = seek_in ch;
input_char = (fun () -> input_char ch);
in_channel_length = in_channel_length ch}

Notice that the original channel is now hidden inside the input – the functions pos_in and input_char
instead simply take the unit () as their input. Let us assure ourselves that this structure also works for
abstracting over strings:

input_of_string : string → input

let input_of_string s =
let pos = ref 0 in
{pos_in = (fun () -> !pos);
seek_in =
(fun p ->

if p < 0 then
raise (Invalid_argument "seek before beginning");

pos := p);
input_char =

(fun () ->
if !pos > String.length s - 1

then raise End_of_file
else (let c = s.[!pos] in pos := !pos + 1; c));

in_channel_length = String.length s}

We allocate a local reference, pos, to hold the current position. It cannot be accessed directly, only
manipulated through the exposed record of functions. The pos_in and in_channel_length functions
are simple. The seek_in function needs to check that the position is positive, but we allow it to be beyond
the end, for compatibility with OCaml channels. The input_char function checks it is not trying to read
beyond the end of the string, then reads a character, advances the position, and returns the character.

Notice we use the same exception scheme as OCaml does in its own channels – raising End_of_file
if a read is attempted beyond the last character.

Example: reading words

We should like to write a program which can extract the words from a given input, such as a string or a file.
For example, given the string

"There were four of them; more than before."

we wish to produce

["there"; "were"; "four"; "of"; "them"; "more"; "than"; "before"]

Chapter 4. Generalized Input/Output 23

removing spaces, punctuation and making the words lower case. First, let us define a function to rewind
the input by one character (useful when we have read a character and decided we do not wish to consume
it), and another, a predicate to determine if a character is considered a non-letter, and thus may be skipped:

rewind : input → unit
is_non_letter : char → bool

let rewind i =
i.seek_in (i.pos_in () - 1)

let is_non_letter x =
match x with
' ' | '!' | '(' | ')' | '.' | ',' | ';' | ':' -> true
| _ -> false

Now, we can write a function skip_characters to skip any punctuation from the current point. It may
raise End_of_file, of course. Then, we have the function collect_characters which, given a fresh
Buffer.t and an input which has been processed by skip_characters, returns the string containing the
next sequence of interesting characters, or raises End_of_file if we are at the end of the input.

skip_characters : input → unit
collect_characters : input → string

let rec skip_characters i =
if is_non_letter (i.input_char ())

then skip_characters i
else rewind i

let rec collect_characters b i =
match

try Some (i.input_char ()) with End_of_file -> None
with

None -> Buffer.contents b
| Some c ->

if is_non_letter c
then Buffer.contents b
else (Buffer.add_char b c; collect_characters b i)

Finally, we can write read_word which finds the next word, if there is one. Then read_words collects
them all in a list, and turns them in to lower case using the Standard Library function String.lowercase.
These functions form Figure 4.1. For example:

read_words (input_of_string "There were four of them; more than before.");;
- : string list = ["there"; "were"; "four"; "of"; "them"; "more"; "than"; "before"]

24 Chapter 4. Generalized Input/Output

read_word : input → string option
read_words_inner : input → string list → string list
read_words : input → string list

let read_word i =
try

skip_characters i;
Some (collect_characters (Buffer.create 20) i)

with
End_of_file -> None

let rec read_words_inner i a =
match read_word i with

None -> List.rev (List.map String.lowercase a)
| Some w -> read_words_inner i (w :: a)

let read_words i =
read_words_inner i []

Figure 4.1

A type for outputs

What do we need for a generic output? We must have an output_char function to write a single character,
at least. It is also useful to have an out_channel_length function so we know how many characters have
been written. We will not allow seeking back and forth like with our input type for the sake of simplicity.
Figure 4.2 shows the output type, and functions to build outputs from channels and strings.

Note that whilst we have unified the interface for writing to strings and channels, they remain different
things: the string has limited length, and if the length is not all used it will contain junk at the end. Let us
use these functions to build a function which writes a list of integers to any output:

output_int_list : output → int list → unit

let output_int_list o ls =
o.output_char '[';
List.iter

(fun n ->
String.iter o.output_char (string_of_int n);
o.output_char ';';
o.output_char ' ')

ls;
o.output_char ']'

Note that o.output_char has an appropriate type for use with standard functions such as String.iter.
We can test with an output built from standard output:

Chapter 4. Generalized Input/Output 25

output_of_channel : out_channel → output
output_of_string : string → output

type output =
{output_char : char -> unit;
out_channel_length : unit -> int}

let output_of_channel ch =
{output_char = (fun c -> output_byte ch (int_of_char c));
out_channel_length = (fun () -> out_channel_length ch)}

let output_of_string s =
let pos = ref 0 in

{output_char =
(fun c ->

if !pos < String.length s
then (s.[!pos] <- c; pos := !pos + 1)
else raise End_of_file);

out_channel_length =
(fun () -> String.length s)}

Figure 4.2

output_int_list (output_of_channel stdout) [1; 2; 3; 4; 5];;
[1; 2; 3; 4; 5]
- : unit = ()

Can you find a way to suppress the extraneous space before the] character?

26 Chapter 4. Generalized Input/Output

Questions

1. Write a function to build an input from an array of characters.

2. Write a function input_string of type input → int → string which returns the given number of
characters from the input as a string, or fewer if the input has ended.

3. Extend the input type to include a function input_char_opt which returns a value of type char
option, with None signalling end of file. Extend the functions input_of_channel and input_of_-
string appropriately.

4. Extend the input type with a function input_byte which returns an integer representing the next
byte, or the special value −1 at end of file. Comment on the usefulness of this compared with
input_char_opt and input_char.

5. Write an input type which raises End_of_file if it reaches a new line (a '\n' character). Use this to
build a program which reads a line from standard input.

6. Write a function to build an output from a Buffer.t. Show how this can be used to retrieve a final
string after output is finished.

Chapter 5

Streams of Bits

We have dealt with byte-by-byte streams of information. Often, though, we need to consider data as a
stream of bits. Can we build a nice abstraction for this?

We could start with a function which builds a list of bits from a byte, and use that for each byte in
the stream, building a final list. This has two disadvantages: it is inefficient in space and time (there are
eight times as many bits as bytes, of course), and it processes all the bytes at once, rather than as required.
Instead, let us build a bit stream based on our input type:

type input_bits =
{input : input;
mutable byte : int;
mutable bit : int}

The input field is the input this bit stream is based upon. It will start from the most significant bit of the
current byte of that input. The byte field holds the byte just read from the input, or an undefined value if
no byte has yet been read. The bit field records the current bit position, but instead of 0..7 we will use
128, 64, 32, 16, 8, 4, 2, 1 so this field can be used directly to extract the bit using the built-in logical AND
operator land, and then halved:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0 1 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 input data

0b01110110 0b11100011 0b01100110 0b000. . . value of byte

128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1 128 64 32 value of bits

F T T T F T T F T T T F F F T T F T T F F T T F F F F byte land bits > 0

The expression x land y where x and y are integers yields an integer whose value has a bit pattern which
is the bitwise logical AND of x and y. This input_bits type can be wholly abstracted, defined in the .mli
by just type input_bits. Now, we can define a function to build an input_bits from an input:

27

28 Chapter 5. Streams of Bits

input_bits_of_input : input → input_bits

let input_bits_of_input i =
{input = i;
byte = 0;
bit = 0}

The function to get the next bit is simple. If bit is zero, we must load a new byte from the input and
return the next bit. If bit is non-zero, we extract the given bit, and halve bit ready for next time.

getbit : input_bits → bool

let rec getbit b =
if b.bit = 0 then

begin
b.byte <- int_of_char (b.input.input_char ());
b.bit <- 128;
getbit b

end
else

let r = b.byte land b.bit > 0 in
b.bit <- b.bit / 2;
r

This function can raise End_of_file, of course, if the underlying call to input_char raises it. Two other
functions are useful. We can align the bit stream on the next byte boundary trivially:

align : input_bits → unit

let align b =
b.bit <- 0

We can write a function getval to return a given number of bits considered as an integer, allowing us to
read a data field of any width. We use the lor operator, which gives the bitwise logical OR of two integers,
and the lsl or logical shift left operator, which shifts the bits in an integer left by the specified number of
bits, filling zeros on the right.

Chapter 5. Streams of Bits 29

getval : input_bits → int → int

let getval b n =
if n <= 0 || n > 31 then

raise (Invalid_argument "getval")
else

let r = ref 0 in
for x = n - 1 downto 0 do
r := !r lor ((if getbit b then 1 else 0) lsl x)

done;
!r

OCaml integers are at least 31 bits (depending upon the computer), so we can read fields up to 31 bits wide
with this function. This number on a particular computer can be calculated by evaluating Sys.word_size
- 1.

Example: decoding a TCP datagram header

Here is the layout of the header of a datagram of the TCP (Transmission Control Protocol) used for network
communications:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source port Destination port

Sequence number

Acknowledgment number

Data offset Reserved

U
R

G

A
C

K

PS
H

R
ST

SY
N

FI
N Window size

Checksum Urgent pointer

It contains fields as small as 1 bit, and as large as 32 bits. We shall use the following 20 byte TCP datagram
header as an example: 00 26 bb 14 62 b7 cc 33 58 55 1e ed 08 00 45 00 03 78 f7 ac.

The code in Figure 5.1, to print out pertinent information from the header, uses getbit, getval, and a
yet-to-be-defined function getval_32 to read the header of a TCP datagram and print a summary. The
function getval_32 returns up to 32 bits in an Int32.t (implementing getval_32 is one of the questions at
the end of the chapter). Here is the output for our example data:

Source port = 38
Destination = 47892
Sequence = 1656212531
Acknowledgement Number = 1481973485
Flags:
Urgent = false
Ack = false
Push = false
Reset = false
Syn = false
Fin = false

30 Chapter 5. Streams of Bits

print_header : string → unit

let print_header filename =
let ch = open_in_bin filename in
let i = input_of_channel ch in
let b = input_bits_of_input i in

let src_port = getval b 16 in
let dest_port = getval b 16 in
let seq_number = getval_32 b 32 in
let ack_number = getval_32 b 32 in
let _ = getval b 4 in data offset
let _ = getval b 6 in reserved
let urgent = getbit b in
let ack = getbit b in
let push = getbit b in
let reset = getbit b in
let syn = getbit b in
let fin = getbit b in
let receive = getval b 16 in
let checksum = getval b 16 in
let urgent_pointer = getval b 16 in
print_string "Source port = ";
print_int src_port;
print_string "\nDestination = ";
print_int dest_port;
print_string "\nSequence =";
print_string (Int32.to_string seq_number);
print_string "\nAcknowledgement Number = ";
print_string (Int32.to_string ack_number);
let print_bool b = print_string (string_of_bool b) in

print_string "\nFlags:\n Urgent = "; print_bool urgent;
print_string "\nAck = "; print_bool ack;
print_string "\nPush = "; print_bool push;
print_string "\nReset = "; print_bool reset;
print_string "\nSyn = "; print_bool syn;
print_string "\nFin = "; print_bool fin;
print_string "Receive window size = ";
print_int receive;
print_string "\nChecksum = ";
print_int checksum;
print_string "\nUrgent pointer = ";
print_int urgent_pointer;
print_string "\n";
close_in ch

Figure 5.1

Chapter 5. Streams of Bits 31

Receive window size = 17664
Checksum = 888
Urgent pointer = 63404

Note we must use open_in_bin for binary data files in case the program is executed on Microsoft Windows,
where text and binary files are considered different and read differently.

Output bit streams

The type for output bit streams is rather similar to that for input bit streams, but it must be used rather
differently.

type output_bits =
{output : output;
mutable obyte : int;
mutable obit : int}

Here, output is the underlying output. The current output byte which is being constructed bit-by-bit is
obyte, and a number obit from 7 down to 0 to represent the current shift required to add a bit to the
byte in the correct place. When it is time to move on to the next byte, obit is −1. We can build a fresh
output_bits from an output:

output_bits_of_output : output → output_bits

let output_bits_of_output o =
{output = o;
obyte = 0;
obit = 7}

The whole byte cannot be written to the underlying output until it has been completed, so we must have
a flush function to be used when output is finished:

flush : output_bits → unit

let flush o =
if o.obit < 7 then o.output.output_char (char_of_int o.obyte);
o.obyte <- 0;
o.obit <- 7

This doubles as our alignment function. We can now write putbit. For reasons we shall explain, it
considers any non-zero input to be a 1 bit.

32 Chapter 5. Streams of Bits

putbit : output_bits → int → unit

let putbit o b =
if o.obit = (-1) then
begin

flush o;
putbit o b

end
else

begin
if b <> 1 then o.obyte <- o.obyte lor (1 lsl o.obit);
o.obit <- o.obit - 1

end

To output a value of width up to 31, we can write a function putval o v l which, given an output_bits,
value, and length in bits, calls putbit on each bit in turn:

putval : output_bits → int → int → unit

let putval o v l =
for x = l - 1 downto 0 do

putbit o (v land (1 lsl x))
done

Now we can see why we allowed any non-zero integer to be considered a 1 bit – it avoids a test in putval.
Now we have everything we need.

We can rebuild the datagram we took apart earlier using putbit, putval, and the yet-to-be-defined
putval_32 as shown in Figure 5.2. In the questions, you are asked to implement various specializations of
some of our input and output functions on bit streams.

Chapter 5. Streams of Bits 33

output_header : string → unit

let output_header filename =
let ch = open_out_bin filename in
let o = output_of_channel ch in
let bits = output_bits_of_output o in

putval bits 38 16;
putval bits 47892 16;
putval_32 bits 1656212531l 32;
putval_32 bits 1481973485l 32;
putval bits 5 4;
putval bits 0 6;
putbit bits 0;
putbit bits 0;
putbit bits 0;
putbit bits 0;
putbit bits 0;
putbit bits 0;
putval bits 17664 16;
putval bits 888 16;
putval bits 63404 16;
flush bits;
close_out ch

Figure 5.2

34 Chapter 5. Streams of Bits

Questions

1. Specialize the function getval so that writing 8 bits at a time when the input is aligned is optimized.
Benchmark this function against the naive one.

2. Write the function getval_32 which can get a value of type Int32.t in the same fashion as getval.

3. Specialize the function putval so that writing 8 bits at a time when the output is aligned is optimized.
Benchmark this function against the naive one.

4. Write the function putval_32 which can put a value of type Int32.t in the same fashion as putval.

5. We said that the output_bits type needed a flush operation. In fact, this is not always true – for
outputs built with, for example, output_of_string, we could write the current byte every time a
bit is written, seeking back one byte each time, only moving on when the byte is actually finished.
Implement this.

Chapter 6

Compressing Data

Often we need to attempt to reduce the amount of space taken by some data, for storage or transmission.
If data were arbitrary, it could not be compressed – to compress data we need to recognise and exploit
patterns. However, most data is not arbitrary at all, but structured and containing repeated patterns. No
compression scheme can guarantee to reduce the size of all inputs, but we would like to achieve good
compression on typical data.

We will look at a simple byte-by-byte compression scheme, implementing it using our input and output
data types so it can be applied to different kinds of inputs and outputs. Then, we will consider a more
complex but efficient scheme for compressing data on a bit-by-bit basis.

A byte-by-byte compression scheme

The following extract from ISO-32000 (the PDF standard) defines a byte-by-byte compression scheme:

The encoded data shall be a sequence of runs, where each run shall consist of a length byte
followed by 1 to 128 bytes of data. If the length byte is in the range 0 to 127, the following
length + 1 (1 to 128) bytes shall be copied literally during decompression. If the length is in the
range 129 to 255, the following single byte shall be copied 257 - length (2 to 128) times during
decompression. A length value of 128 shall denote EOD [end of data].

For example, consider the text “((5.000000, 4.583333), (4.500000,5.000000))”, which can be repre-
sented in ASCII as the list of integers [40; 40; 53; 46; 48; 48; 48; 48; 48; 48; 44; 32; 52; 46; 53;
56; 51; 51; 51; 51; 41; 44; 32; 40; 52; 46; 53; 48; 48; 48; 48; 48; 44; 53; 46; 48; 48; 48;
48; 48; 48; 41; 41] of length 43. This will be compressed as shown in Figure 6.1. That is to say, as [255;
40; 1; 53; 46; 251; 48; 5; 44; 32; 52; 46; 53; 56; 253; 51; 6; 41; 44; 32; 40; 52; 46; 53;
252; 48; 2; 44; 53; 46; 251; 48; 255; 41; 128], of length 35. The maximum compression ratio
achieved with this method (for long constant data) is 64:1. The worst case (alternating bytes) is 127:128 – a
slight expansion.

Let us begin with two utility functions to allow us to convert between strings and lists of integers –
this will make it easier to understand our examples when we evaluate them in OCaml’s top level:

35

36 Chapter 6. Compressing Data

Input data Type of run Length Output header Output data

40 40 same 2 257 - 2 = 255 40
53 46 different 2 2 - 1 = 1 53 46
48 48 48 48 48 48 same 6 257 - 6 = 251 48
44 32 52 46 53 56 different 6 6 - 1 = 5 44 32 52 46 53 56
51 51 51 51 same 4 257 - 4 = 253 51
41 44 32 40 52 46 53 different 7 7 - 1 = 6 41 44 32 40 52 46 53
48 48 48 48 48 same 5 257 - 5 = 252 48
44 53 46 different 3 3 - 1 = 2 44 53 46
48 48 48 48 48 48 same 6 257 - 6 = 251 48
41 41 same 2 257 - 2 = 255 41
- EOD - - 128

Figure 6.1

string_of_int_list : int list → string
int_list_of_string : string → int list

let string_of_int_list l =
let s = String.create (List.length l) in
List.iteri (fun n x -> s.[n] <- char_of_int x) l;
s

let int_list_of_string s =
let l = ref [] in

for x = String.length s - 1 downto 0 do
l := int_of_char s.[x] :: !l

done;
!l

Note the use of the Standard Library function List.iteri which is like List.iter, but it passes an
additional integer to the function each time, representing the position in the list, starting at 0. Note also
that we use downto in int_list_of_string to avoid a list reversal.

Now, we shall build a little abstraction to allow our compression and decompression functions to
share a common basis. Our compress and decompress function will need to read from any input, and
write to any output. However, for our little tests, we shall be reading from and writing to strings. Since
we do not know the size of the compressed or decompressed output in advance, we cannot allocate an
appropriately sized string. So, let us build an output from a Buffer.t. This way, we can write a function
process which, given a compression or decompression function, creates a buffer, builds an output from it,
calls the function to process the data, and then extracts the final string from the buffer.

Chapter 6. Compressing Data 37

output_of_buffer : Buffer.t → output
process : (input → output → unit) → string → string

let output_of_buffer b =
{output_char = Buffer.add_char b;
out_channel_length = fun () -> Buffer.length b}

let process f s =
let b = Buffer.create (String.length s) in
f (input_of_string s) (output_of_buffer b);
Buffer.contents b

Now, given some suitable function decompress, say, we can call process giving the function and a string,
and get a new string back.

Decompression in this scheme, as is often the case, is simpler than compression, so we shall address it
first. The whole thing is wrapped in a loop which terminates only upon an exception. If the input data is
well-formed, that exception will be EOD, which we have defined for this purpose. Inside the loop, we read
a byte from the input. It is either in the range 0...127, in which case it is a “different” run, and we copy
some bytes from input to output. Or, it is in the range 129...255, in which case it is a “same” run, and we
output a number of copies of the next byte. Otherwise, the byte must have value 128, and we raise the EOD
exception. The decompress_string function is as simple as we claimed it would be, because we wrote
process.

decompress : input → output → unit
decompress_string : string → string

exception EOD

let decompress i o =
try

while true do
match int_of_char (i.input_char ()) with
x when x >= 0 && x <= 127 ->
for p = 1 to x + 1 do o.output_char (i.input_char ()) done

| x when x > 128 && x <= 255 ->
let c = i.input_char () in

for p = 1 to 257 - x do o.output_char c done
| _ -> raise EOD

done
with

EOD -> ()

let decompress_string = process decompress

For compression, we will first write functions to recognise a “same” run and a “different” run in the
input, and then a main function which uses them as appropriate. The function get_same returns the first
character, and an integer representing the number (one or more) of “same” characters starting with the
first one. It leaves the input pointing at the last “same” character. If 128 same characters have been found,

38 Chapter 6. Compressing Data

we must stop early. If we are at the end of input when the function is called, End_of_file is raised as
usual.

get_same : input → char × int

let get_same i =
let rec getcount ch c =
if c = 128 then 128 else

try
if i.input_char () = ch

then getcount ch (c + 1)
else (rewind i; c)

with
End_of_file -> c

in
let ch = i.input_char () in (ch, getcount ch 1)

The get_different function is rather more awkward. It will return the non-empty list of “different”
characters starting at the current position. We must stop as soon as we notice two like characters,
rewinding twice and removing a character from our accumulator. So, for example, if we are reading
“An Accumulation” we want to return ['A'; 'n'; ' '; 'A'] but we do not know this until we read the
second 'c'. Again, we must stop after 128 differing characters. As before, End_of_file is raised if we are
at the end of the input on the initial call.

get_different : input → char list

let get_different i =
let rec getdiffinner a c =
if c = 128 then List.rev a else

try
let ch' = i.input_char () in
if ch' <> List.hd a

then getdiffinner (ch' :: a) (c + 1)
else (rewind i; rewind i; List.rev (List.tl a))

with
End_of_file -> List.rev a

in
getdiffinner [i.input_char ()] 1

The compression function is now relatively simple. We repeatedly call get_same. If it indicates a run of
length one, we call get_different instead. In each case we write appropriate data. Then, on End_of_-
file, we write the EOD marker. The compress_string function is built just like decompress_string.

Chapter 6. Compressing Data 39

compress : input → output → unit

let compress i o =
try

while true do
match get_same i with
(_, 1) ->

rewind i;
let cs = get_different i in

o.output_char (char_of_int (List.length cs - 1));
List.iter o.output_char cs

| (b, c) ->
o.output_char (char_of_int (257 - c));
o.output_char b

done
with

End_of_file -> o.output_char (char_of_int 128)

let compress_string = process compress

Let us try with our sample data:

OCaml

open Examples;;
example;;
- : string = "((5.000000, 4.583333), (4.500000,5.000000))"

int_list_of_string example;;
- : int list =
[40; 40; 53; 46; 48; 48; 48; 48; 48; 48; 44; 32; 52; 46; 53; 56; 51; 51; 51;
51; 41; 44; 32; 40; 52; 46; 53; 48; 48; 48; 48; 48; 44; 53; 46; 48; 48; 48;
48; 48; 48; 41; 41]

let smaller = compress_string example;;
val smaller : string = "?(\0015.?0\005, 4.58?3\006), (4.5?0\002,5.?0?)\128"

int_list_of_string smaller;;
- : int list =
[255; 40; 1; 53; 46; 251; 48; 5; 44; 32; 52; 46; 53; 56; 253; 51; 6; 41; 44;
32; 40; 52; 46; 53; 252; 48; 2; 44; 53; 46; 251; 48; 255; 41; 128]

decompress_string (compress_string example) = example;;
- : bool = true

A bit-by-bit compression scheme

Our previous method required whole bytes to be equal to one another to compress well. Now we consider
compression bit-by-bit, but on the same principle – encoding the lengths of runs of data. We will build a

40 Chapter 6. Compressing Data

compressor and decompressor for the CCITT Group 3 compression scheme. This is the basic scheme used
by the fax machines since the 1970s, and for 1 bit-per-pixel TIFF files. It is also used in the PDF format, as
we shall see later in the book. Here is our example data, an 80x21, one-bit-per-pixel image of a scanned
word from printed paper:

We can put it into our source file using the characters 0 and 1 to ease readability. A string can run over
several lines if a backslash is added at the end of each line. Spaces at the beginning of the next line are also
skipped, so we can line it up nicely:

let input_data =
"00\
0001000000\
00000000111111110000000000011111111100000000000000000000000000000000000111100000\
00000011000000011100000001110000001110000000000000000000000000000000000011000000\
00000110000000001110000011000000000110000000000000000000000000000000000011000000\
000011100000000001110001110011000000\
000011000000000001110001100011000000\
00001100000000000011001110000000000000000011100000000100111000011100000011000000\
00011100000000000011001110000000000000001111111000111111111101111110000001000000\
00011100000000000011101100000000000000001000011000001110001111000111000001000000\
00011100000000000011101100000000000000000000011000001100000110000011000001000000\
00011100000000000011001110000000000000000000011000001100000110000011000001000000\
00001100000000000011001110000000000000000111011000001100000110000011000001000000\
00001110000000000011000110000000000000011100011000001100000110000011000001000000\
00001110000000000110000111000000000000011000011000001100000110000011000011000000\
00000111000000000110000011100000000000011000011000001100000110000011000011100000\
00000011100000001100000001110000000010010001110000011000001100000110000111000000\
00000011111111100000000001111111111000111110111000111100011110000111001111100000\
00000000011100000000000000001111000000001000000000000000000000000000000000000000\
00\
00"

You can see that it consists of runs of 0 (white) and 1 (black) pixels, 80 to each line, with 21 lines.

Preliminaries

First, we had better define a function to convert the string of zeros and ones to a string containing the
actual binary data. We can do this by building an output_bits with an output built from a buffer. Then,
after flushing, we can use Buffer.contents to extract the data we have written.

Chapter 6. Compressing Data 41

packedstring_of_string : string → string

let packedstring_of_string s =
let b = Buffer.create (String.length s / 8 + 1) in
let o = output_bits_of_output (output_of_buffer b) in

for x = 0 to String.length s - 1 do putbit o (s.[x] = '1') done;
flush o;
Buffer.contents b

Note that, since the string will always be a whole number of bytes (possibly padded with zeros by flush)
we must remember the width and height of our image (80 and 21 here) and pass one or both of them to
some of our other functions. For example, we can write a function to print one of these packed binary
strings. This needs the width of the image to know when to print newlines:

print_packedstring : int → string → unit

let print_packedstring w s =
let ibits = input_bits_of_input (input_of_string s) in
try

while true do
for column = 1 to w do print_int (getbitint ibits) done;
print_newline ()

done
with

End_of_file -> ()

For simplicity here, we do not worry about padding at the end (in our example, since the width is 80, it
will consist of whole bytes anyway).

Fax compression explained

We have said that the compression will proceed by encoding the lengths of the runs of zeros and ones in
our data. How do we encode them? We need a set of binary sequences which can be distinguished from
one another (i.e. no sequence can be a prefix of another sequence). In the case of fax compression, there are
codes for run lengths 0 to 63, and different codes for white and black runs, as shown in Figure 6.2. Shorter
codes are chosen for the more common cases, based on a statistical analysis of real documents.
Notice that no white symbol is a prefix of another white symbol, and no black symbol is a prefix of another
black symbol. These codes for runs from 0 to 63 are called terminating codes. When a run is longer, we
use one “make-up code”, shown in Figure 6.3, followed by a terminating code. Thus, the longest run is of
length 1728 + 63 = 1791.

The reason for distinguishing between white and black codes is to do with error correction in unreliable
transport mechanisms (such as phone lines that fax machines operate over) – otherwise we could just have
one set of codes and assume runs alternate. The reason for the existence of a zero-length run is that each
line is defined to begin with a white run. If it is really black, a zero-length white run is output first. No run
is longer than a line. As an example, let us compress the first three lines of our example data:

42 Chapter 6. Compressing Data

Run White Black Run White Black Run White Black
0 00110101 0000110111 22 00000011 00000110111 44 00101101 000001010100
1 0000111 010 23 0000100 00000101000 45 00000100 000001010101
2 0111 11 24 0101000 00000010111 46 00000101 000001010110
3 1000 10 25 0101011 00000011000 47 00001010 000001010111
4 1011 011 26 0010011 000011001010 48 0000101 00001100100
5 1100 0011 27 0100100 000011001011 49 01010010 000001100101
6 1110 0010 28 0011000 000011001100 50 01010011 000001010010
7 1111 00011 29 00000010 000011001101 51 01010100 000001010011
8 1011 000101 30 00000011 000001101000 52 01010101 000000100100
9 10100 000100 31 00011010 000001101001 53 00100100 000000110111
10 00111 0000100 32 00011011 000001101010 54 00100101 000000111000
11 01000 0000101 33 00010010 000001101011 55 01011000 000000100111
12 001000 0000111 34 00010011 000011010010 56 01011001 000000101000
13 000011 00000100 35 00010100 000011010011 57 01011010 000001011000
14 110100 00000111 36 00010101 000011010100 58 01011011 000001011001
15 110101 000011000 37 00010110 000011010101 59 01001010 000000101011
16 101010 0000010111 38 00010111 000011010110 60 00110010 000000101100
17 101011 0000011000 39 00101000 000011010111 61 00110010 000001011010
18 0100111 0000001000 40 00101001 000001101100 62 00110011 000001100110
19 0001100 00001100111 41 00101010 000001101101 63 00110100 000001100111
20 0001000 00001101000 42 00101011 000011011010 (make up codes required
21 0010111 00001101100 43 00101100 000011011011 for longer runs)

Figure 6.2

Chapter 6. Compressing Data 43

Run White Black Run White Black
64 11011 0000001111 960 011010100 0000001110011
128 10010 000011001000 1024 011010101 0000001110100
192 010111 000011001001 1088 011010110 0000001110101
256 0110111 000001011011 1152 011010111 0000001110110
320 00110110 000000110011 1216 011011000 0000001110111
384 00110111 000000110100 1280 011011001 0000001010010
448 01100100 000000110101 1344 011011010 0000001010011
512 01100101 0000001101100 1408 011011011 0000001010100
576 01101000 0000001101101 1472 010011000 0000001010101
640 01100111 0000001001010 1536 010011001 0000001011010
704 011001100 0000001001011 1600 010011010 0000001011011
768 0 11001101 0000001001100 1664 011000 0000001100100
832 011010010 0000001001101 1728 010011011 0000001100101
896 011010011 0000001110010

Figure 6.3

00
0001000000
00000000111111110000000000011111111100000000000000000000000000000000000111100000

We have the following:

Length Colour Code

80 White 11011 + 101010
73 White 11011 + 10100
1 Black 010
6 White 1110
8 White 1011
8 Black 000101
11 White 01000
9 Black 000100
35 White 00010100
4 Black 011
5 White 1100

We have reduced the data from 240 bits to 64 bits, a reduction of about three quarters.

44 Chapter 6. Compressing Data

Compressing fax data

First, we need to encode the terminating and make-up codes. We will use arrays for direct indexing, but
lists for each element, since we do not need random access to each bit. This is shown in Figure 6.4. Now,
we can write a function which, given a length of run and a colour, gives the appropriate code as a list of
bits:

code : bool → int → int list

let rec code isblack length =
if length > 1791 || length < 0 then

raise (Invalid_argument "code: bad length")
else
if length > 64 then

let m =
if isblack

then black_make_up_codes.(length / 64 - 1)
else white_make_up_codes.(length / 64 - 1)

in
m @ code isblack (length mod 64)

else
if isblack
then black_terminating_codes.(length)
else white_terminating_codes.(length)

Now, a function which, given the current colour, an input_bits, the current number of like bits read, and
the width of the image, returns a pair of the number of like bits, and the colour:

read_up_to : int → input_bits → int → int → int × int

let rec read_up_to v i n w =
if n >= w then (n, v) else
if peekbit i = v
then (ignore (getbit i); read_up_to v i (n + 1) w)
else (n, v)

For example, the first call to read_up_to will calculate (80, 0). Now we can write the main function.
Given an input_bits and output_bits, and the width and height of the image, for each line we check if a
zero-width white run needs to be added, and then call encode_fax_line.

Chapter 6. Compressing Data 45

white_terminating_codes : int list array
black_terminating_codes : int list array
white_make_up_codes : int list array
black_make_up_codes : int list array

let white_terminating_codes =
[|[0; 0; 1; 1; 0; 1; 0; 1];

[0; 0; 0; 1; 1; 1];
[0; 1; 1; 1];
[1; 0; 0; 0];
[1; 0; 1; 1];
[1; 1; 0; 0]; and so on. . .

let black_terminating_codes =
[|[0; 0; 0; 1; 1; 0; 1; 1; 1];

[0; 1; 0];
[1; 1];
[1; 0];
[0; 1; 1];
[0; 0; 1; 1]; and so on. . .

let white_make_up_codes =
[|[1; 1; 0; 1; 1];

[1; 0; 0; 1; 0];
[0; 1; 0; 1; 1; 1];
[0; 1; 1; 0; 1; 1; 1];
[0; 0; 1; 1; 0; 1; 1; 0];
[0; 0; 1; 1; 0; 1; 1; 1]; and so on. . .

let black_make_up_codes =
[|[0; 0; 0; 0; 0; 0; 1; 1; 1; 1];

[0; 0; 0; 0; 1; 1; 0; 0; 1; 0; 0; 0];
[0; 0; 0; 0; 1; 1; 0; 0; 1; 0; 0; 1];
[0; 0; 0; 0; 0; 1; 0; 1; 1; 0; 1; 1];
[0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 1; 1];
[0; 0; 0; 0; 0; 0; 1; 1; 0; 1; 0; 0]; and so on. . .

Figure 6.4

46 Chapter 6. Compressing Data

encode_fax : input_bits → output_bits → int → int → unit

let encode_fax i o w h =
let rec encode_fax_line i o w =

if w > 0 then
let n, isblack = read_up_to (peekbit i) i 0 w in
List.iter (putbitint o) (code isblack n);
encode_fax_line i o (w - n)

in
for x = 1 to h do

if peekbit i then List.iter (putbitint o) (code true 0);
encode_fax_line i o w

done

Now we can write a function process, just like we did in the byte-by-byte example, but for input_bits
and output_bits. We must be sure to flush the output. The main compress_string_ccitt function is
then simple:

process : (input_bits → output_bits → int → int → unit) →
string → int → int → string

compress_string_ccitt : (int → int → unit) → string → int → int → string

let process f s w h =
let b = Buffer.create (String.length s) in
let ibits = input_bits_of_input (input_of_string s) in
let obits = output_bits_of_output (output_of_buffer b) in

f ibits obits w h;
flush obits;
Buffer.contents b

let compress_string_ccitt = process encode_fax

For our full input data, the input string is 80× 21 = 1680 bits long, and the compressed string is 960 bits
long, a compression ratio of 7:4.

Decompressing fax data

For decompression, we will write two functions for reading white and black codes. It is easiest to directly
encode the decision tree:

Chapter 6. Compressing Data 47

read_white_code : input_bits → int
read_black_code : input_bits → int

let rec read_white_code i =
let a = getbitint i in
let b = getbitint i in
let c = getbitint i in
let d = getbitint i in

match a, b, c, d with
0, 1, 1, 1 -> 2

| 1, 0, 0, 0 -> 3
| 1, 0, 1, 1 -> 4
| 1, 1, 0, 0 -> 5
| 1, 1, 1, 0 -> 6
| 1, 1, 1, 1 -> 7
| _ ->

let e = getbitint i in
match a, b, c, d, e with

1, 0, 0, 1, 1 -> 8
| 1, 0, 1, 0, 0 -> 9
| 0, 0, 1, 1, 1 -> 10
| 0, 1, 0, 0, 0 -> 11
| 1, 1, 0, 1, 1 -> 64 + read_white_code i
| 1, 0, 0, 1, 0 -> 128 + read_white_code i
| _ ->

let f = getbitint i in
match a, b, c, d, e, f with

0, 0, 0, 1, 1, 1 -> 1 and so on. . .

let rec read_black_code i =
let a = getbitint i in
let b = getbitint i in

match a, b with
1, 1 -> 2

| 1, 0 -> 3
| _ ->

let c = getbitint i in
match a, b, c with
0, 1, 0 -> 1

| 0, 1, 1 -> 4
| _ ->

let d = getbitint i in
match a, b, c, d with
0, 0, 1, 1 -> 5 and so on. . .

Now, decoding is relatively simple. We decode runs for each line, until the width is all used up, and do
this for each line. We read white and black codes alternately – each line begins on white. We can use
process again:

48 Chapter 6. Compressing Data

decode_fax : input_bits → output_bits → int → int → unit
decompress_string_ccitt : (int → int → unit) → string → int → int → string

let decode_fax i o w h =
let lines = ref h in
let pixels = ref w in
let iswhite = ref true in

while !lines > 0 do
while !pixels > 0 do
let n =
(if !iswhite then read_white_code else read_black_code) i

in
for x = 1 to n do

putbitint o (if !iswhite then 0 else 1)
done;
pixels := !pixels - n;
iswhite := not !iswhite

done;
iswhite := true;
pixels := w;
lines := !lines - 1

done

let decompress_string_ccitt = process decode_fax

We can verify our code by evaluating s = decompress_string_ccitt (compress_string_ccitt s) for
our example data.

Chapter 6. Compressing Data 49

Questions

1. How much complexity did using the input and output types add to compress and decompress
in our byte-by-byte example? Rewrite the functions so they just operate over lists of integers, in
functional style, and compare the two.

2. Replace our manual tree of codes with a tree automatically generated from the lists of codes used
for compression. The tree will have no data at its branches (since no code is a prefix of another), and
will have data at only some of its leaves. Define a suitable data type first.

3. What happens if we compress our data as a single line of 1680 bits instead of 21 lines of 80? What
happens if we try to compress already-compressed data?

4. Write a function which, given input data, will calculate a histogram of the frequencies of different
runs of white and black. This could be used to build custom codes for each image, improving
compression.

Chapter 7

Labelled and Optional Arguments

OCaml allows us to label some or all of the arguments to a function, so as to provide a little documentation,
to prevent us from accidently swapping two arguments which have the same type, and to allow partial
application of arguments more flexibly. Consider a function to fill in part of an array with an element:

fill : α array → int → int → α → unit
filled : unit → string array

let fill a s l v =
for x = s to s + l - 1 do a.(x) <- v done

let filled () =
let a = Array.make 100 "x" in

fill a 20 40 "y";
a

The fill function takes four arguments: the array itself, the start position, length of the fill and the
element to use to fill. However, since the start and length are both integers, it is easy to get them the
wrong way round. This can be remedied by giving those two arguments labels. A label is introduced by a
tilde, followed by the label name, a colon and the argument name itself. Consider the functions fill and
filled below. As you can see, we have defined fill with labels, which appear in the type as well. In the
first filled function, we call the fill function, citing the labels and giving immediate integers. In the
second, we show that it works with other names (as it does, indeed, for any expression). In the third, we
show that the labelled arguments may be permuted and rearranged with regard to the other arguments
(unlabelled arguments must remain in the correct order relative to one another).

51

52 Chapter 7. Labelled and Optional Arguments

fill : α array → start:int → length:int → α → unit
filled : unit → string array

let fill a ~start:s ~length:l v =
for x = s to s + l - 1 do a.(x) <- v done

let filled () =
let a = Array.make 100 "x" in

fill a ~start:20 ~length:40 "y";
a

let filled () =
let a = Array.make 100 "x" in

let st = 20 in
let ln = 40 in

fill a ~start:st ~length:ln "y";
a

let filled () =
let a = Array.make 100 "x" in

fill a "y" ~length:20 ~start:40;
a

Another change we can make is to use the label for the name of the argument inside the function too. This
simplifies the syntax: we can just write ~label.

fill : α array → start:int → length:int → α → unit
filled : unit → string array

let fill a ~start ~length v =
for x = start to start + length - 1 do a.(x) <- v done

let filled () =
let a = Array.make 100 "x" in

let start = 20 in
let length = 40 in

fill a ~start ~length "y";
a

You can see that in filled, this “punning” works equally well when calling the function, if we happen to
have values with the same names. These two facilities need not be used together, of course.

Labels with partial application

Another common use of labelled arguments is to give flexibility when using partial application. Consider
the following function:

Chapter 7. Labelled and Optional Arguments 53

let divide x y = x / y

We can use partial application to write the function which divides ten thousand by each number in a list:

let f = divide 10000 in [f 100; f 50; f 20]

This yields [100; 200; 500]. But we cannot re-use divide to write the function which divides each
number in a list by ten – this would involve partially applying the second argument y first. The design
of the divide function has baked in which argument may be partially applied (OCaml lets us partially
apply any prefix of the arguments – the first, first and second, first, second and third etc.) For example,
we can apply the same function to many lists, using a partially applied List.map but we cannot apply
many functions to a single list by providing the list to List.map instead. In our example, we can label the
arguments to our divide function:

let divide ~x ~y = x / y

The type of the function reflects this:

OCaml

let divide ~x ~y = x / y;;
val divide : x:int -> y:int -> int = <fun>

Now we may apply the arguments in either order:

OCaml

let f = divide ~x:10000 in [f 100; f 50; f 20];;
- : int list = [100; 200; 500]
let f = divide ~y:10000 in [f 100000; f 10000; f 1000];;
- : int list = [10; 1; 0]

We can in fact, omit the labels if we are applying arguments in order:

OCaml

let f = divide 10000 in [f 100; f 50; f 20];;
- : int list = [100; 200; 500]

Optional arguments

OCaml also allows us to make a labelled argument optional – that is to say, we need not supply it at all.
The function which is called without one or more of its arguments can decide what to do. Consider this

54 Chapter 7. Labelled and Optional Arguments

simple function split which returns a list of singleton lists from an input list, for example returning [[1];
[2]; [3]] for the input list [1; 2; 3]:

split : α list → α list list

let rec split l =
match l with

[] -> []
| h::t -> [h] :: split t

We would like to extend the function to produce sub-lists of a given size, other than the default of 1. We
can add a labelled argument and adapt the function, using take (which takes a given number of items
from the start of a list) and drop (which drops a given number of items from the start of a list) from the
Util module described on page xiii:

split : chunksize:int → α list → α list list

let rec split ~chunksize l =
try
Util.take l chunksize ::
split ~chunksize (Util.drop l chunksize)

with
_ -> match l with [] -> [] | _ -> [l] last, partial, chunk

There are two problems, though. Existing code using the function will not compile, and we must always
specify the chunksize argument, even when it will be 1. This can be remedied by using an optional labelled
argument, introduced with a question mark instead of a tilde, and given a default value:

split : ?chunksize:int → α list → α list list

let rec split ?(chunksize = 1) l =
try
Util.take l chunksize ::
split ~chunksize (Util.drop l chunksize)

with
_ -> match l with [] -> [] | _ -> [l] last, partial, chunk

Notice the question mark appears also in the type. Notice also that in the recursive call to split we can
write ~chunksize instead of ~chunksize:chunksize as usual. Now our split function can be called
with or without this optional argument:

Chapter 7. Labelled and Optional Arguments 55

OCaml

split [1; 2; 3];;
- : int list list = [[1]; [2]; [3]]
split ~chunksize:3 [1; 2; 3; 4; 5; 6; 7];;
- : int list list = [[1; 2; 3]; [4; 5; 6]; [7]]

In fact, if we do not give a default value to the optional argument in the definition of split, we have
access to its actual implementation – as a value of the option type, either None or Some, and we can match
on it:

split : ?chunksize:int → α list → α list list

let rec split ?chunksize l =
let ch =

match chunksize with None -> 1 | Some x -> x
in

try
Util.take l ch :: split ~chunksize:ch (Util.drop l ch)

with
_ -> match l with [] -> [] | _ -> [l]

This is primarily useful when there are several optional arguments.

Labels in the Standard Library

The Standard Library contains three labelled versions of other modules: ListLabels, ArrayLabels and
StringLabels. For example, we can write:

OCaml

ListLabels.map ~f:(fun x -> x * 2) [1; 2; 3];;
- : int list = [2; 4; 6]

If we wish to use the labelled modules by default, the module StdLabels contains these labelled modules
under their original names so, by writing “open StdLabels”, List.map, Array.blit etc. will now be
labelled:

OCaml

open StdLabels;;
List.map ~f:(fun x -> x * 2) [1; 2; 3];;
- : int list = [2; 4; 6]

These modules do not label all arguments. Typically they just do so for arguments which are func-
tions, and when there are multiple arguments of the same type which may be confused. For example,
ArrayLabels.sub of type α array → pos:int → len:int → α array introduces labels to disambiguate the
position and length arguments, but does not label in the input array.

56 Chapter 7. Labelled and Optional Arguments

Questions

1. The function ArrayLabels.make is not labelled, having type int → α → α array. When might this
cause confusion? Write a labelled version to correct this problem.

2. When we wrote our fill function with labelled arguments, we wanted to prevent someone
mistakenly swapping the start and length values. Can you find a way to do this without labelled or
optional arguments?

3. Build labelled versions of functions from the Buffer module, choosing which functions and argu-
ments to label as appropriate.

4. Frequently we use an accumulator to make a function tail-recursive, wrapping it up in another
function to give the initial value of the accumulator. For example, we might write:

map_inner : α list → (α → β) → α list → β list
map : (α → β) → α list → β list

let rec map_inner a f l =
match l with
[] -> List.rev a

| h::t -> map_inner (f h :: a) f t

let map f l = map_inner [] f l

Use an optional argument to express this as a single function.

Chapter 8

Formatted Printing

OCaml provides facilities for what is called formatted printing. Consider the following function, culled
from Chapter 3:

string_of_point : point → string

let string_of_point p =
p.label
^ " = ("
^ string_of_float p.x
^ ", "
^ string_of_float p.y
^ ")"

Using the function sprintf (“formatted printing to a string”) from the Standard Library module Printf
we can build this string more easily:

string_of_point : point → string

let string_of_point p =
Printf.sprintf "%s = (%f, %f)" p.label p.x p.y

In this example, the format string is “%s = (%f, %f)”. The conversion specifications %s and %f denote places
for a string and the decimal representation of a floating-point number respectively to be substituted into
the string. Other characters are simply reproduced from the format string to the output string. We have
avoided the inefficient, repeated use of the ^ operator for string concatenation, and our new example is
both shorter and easier to read. Here is a subset of the many conversion specifications available:

57

58 Chapter 8. Formatted Printing

Conversion specification Description

%i integer in decimal representation
%x integer in hexadecimal, lower case
%X integer in hexadecimal, upper case
%s string
%f floating-point number
%B boolean
%% percent character
%! flush the output

The sprintf function knows how to match up the conversion specification with the arguments following
the format specification at compile time, so run-time errors are avoided:

OCaml

Printf.sprintf "%s = (%f, %f)" "A" 40 65.8;;
Error: This expression has type int but an expression was expected of type

float

Indeed, even if we use partial application, the type of the resulting function will be calculated:

OCaml

let f = Printf.sprintf "%s = (%f, %f)" "A" 2.45;;
val f : float -> string = <fun>

You might be able to guess that there is a little magic going on here – we could not write sprintf
ourselves, for example. We can see the rather complicated type of the sprintf function, used for its
internal implementation:

OCaml

Printf.sprintf;;
- : ('a, unit, string) format -> 'a = <fun>

For printing numbers, there are some additional pieces of information which can be provided. The format
of a conversion specifier is in fact:

%〈flags〉〈width〉〈.precision〉type

Fields enclosed in angle brackets are optional. So far, we have only used the % character and the type field.
The width field defines the width of the representation of the number, and can be used to line things up in
columns, here of width six:

Chapter 8. Formatted Printing 59

data : (int × int × int) list
print_header : unit → unit
print_line : int → int → int → unit
print_nums : (int × int × int) list → unit

let data =
[(1, 6, 5);
(2, 18, 4);
(3, 31, 12);
(4, 16, 2)]

let print_header () =
Printf.printf "A | B | C \n";
Printf.printf "------+-------+-------\n"

let print_line a b c =
Printf.printf "%6i| %6i| %6i\n" a b c

let print_nums nums =
print_header ();
List.iter (fun (a, b, c) -> print_line a b c) nums

This will result in the following output from print_nums data:

A | B | C
------+-------+-------

1| 6| 5
2| 18| 4
3| 31| 12
4| 16| 2

Here are some possible values of the flags field:

Flag Description

- left-justify within width (the default is to right-justify)
0 pad number within width with zeros instead of spaces
+ prefix positive number with +

The optional precision field specifies the number of digits after the decimal point. For example, let us print
some integers and floating-point numbers in columns with differing flags and precisions:

60 Chapter 8. Formatted Printing

data : (int × float × float) list
print_header : unit → unit
print_line : int → float → float → unit
print_nums : (int × float × float) list → unit

let data =
[(1, 35.54263, 39.42312);
(2, 12.31341, 23.24123);
(3, 13.53342, 23.21457);
(4, 57.74572, 126.74554)]

let print_header () =
Printf.printf "A | B | C \n";
Printf.printf "------+-------+-------\n"

let print_line a b c =
Printf.printf "%06i| %-6.2f| %-6.2f\n" a b c

let print_nums nums =
print_header ();
List.iter (fun (a, b, c) -> print_line a b c) nums

This will result in the following output from print_nums data:

A | B | C
------+-------+-------
000001| 35.54 | 39.42
000002| 12.31 | 23.24
000003| 13.53 | 24.21
000004| 57.75 | 126.75

Printing to other places

Of course, once we have calculated a string using sprintf, we can do with it what we may – however, for
convenience and efficiency, the Printf module provides several other functions:

Function Description

printf writes to standard output (printf format arg1...argN)
eprintf writes to standard error (eprintf format arg1...argN)
bprintf writes to a given Buffer.t (bprintf buffer format arg1...argN)
fprintf writes to a given out_channel (fprintf channel format arg1...argN)

These all return unit. For example, to write a point to standard output, using the %!conversion specification
to flush each time so screen update is immediate:

Chapter 8. Formatted Printing 61

print_point : point → unit

let print_point p =
Printf.printf "%s = (%f, %f)%!" p.label p.x p.y

It might be argued, though, that it is better to keep string_of_point as the basic function, so it can be
reused in other situations, writing the generated string to the screen from the calling function instead.

62 Chapter 8. Formatted Printing

Questions

1. Given a list of pairs of integers such as [(1, 2); (5, 6); (6, 6); (7, 5)], write a function
to return a string representation such as "(1, 2) --> (5, 6) --> (6, 6) --> (7, 5) --> (1,
2)".

2. Write a function which, given a string, returns another string which represents the first using
hexadecimal numbers. For example, the input string Hello should yield the output 48656c6c6f
since 'H' has ASCII code 0x48 and so on.

3. Why does the following code cause a type error?

let mkstring () = "string";;
val mkstring : unit -> string = <fun>
Printf.printf (mkstring ());
;;

Error: This expression has type string but an expression was expected of type
('a, out_channel, unit) format =

('a, out_channel, unit, unit, unit, unit) format6

What can be done to fix it?

4. Use the * syntax described in the Printf module documentation to write a function which can print
a table of integers to a given width. For example, given width 10, we might see:

(1)
(23)
(33241)
(0)

Chapter 9

Searching for Things

How do we look for a sequence in another, longer sequence? Suppose we want to write a function
search_list which, given the list p (the pattern) to search for in the list l determines if it exists (i.e. if it is
a sub-list). For example, the list [1; 2] is found in [2; 1; 2; 2] but not in [2; 1; 1]. A list p is defined
to be a sub-list of a list l if there exist lists x and y such that l = x @ p @ y. One, two, three, or all four of x,
p, y, l can be the empty list, of course. So, for example, [] is a sub-list of [1; 2; 3] and of []. A list p is a
sub-list of l if:

• The length of p is less than or equal to the length of l and either

• The sub-list p is found at the beginning of l, or

• The list p is a sub-list of the tail of l

We can write this out easily, using the take and drop functions from our Util module, described on page
xiii:

search_list : α list → α list → bool

let rec search_list p l =
List.length p <= List.length l

&&
(Util.take l (List.length p) = p || search_list p (List.tl l))

(Recall that the || operator does not evaluate its right hand side if the left hand side evaluates to true, so
this function will exit as soon as it finds a match.) We might be worried about the call List.tl failing, but
if l is empty, the pattern must be empty from the first test, and so the condition with Util.take would
have succeeded already. You can see that there are two inefficiencies here, the use of List.length on p
and l each time around, and the explicit building of the list to check the pattern against with Util.take.
Let us remove the first one:

63

64 Chapter 9. Searching for Things

search_list_inner : α list → int → α list → int → bool
search_list : α list → α list → bool

let rec search_list_inner p len_p l len_l =
len_p <= len_l

&&
(Util.take l len_p = p ||
search_list_inner p len_p (List.tl l) (len_l - 1))

let search_list p l =
search_list_inner p (List.length p) l (List.length l)

Now, List.length is called only at the beginning. We can also remove Util.take to avoid the construc-
tion of intermediate lists, by writing an explicit function to test the pattern against the first len_p items in
the lists:

equal : α list → int → α list → bool
search_list_inner : α list → int → α list → int → bool
search_list : α list → α list → bool

let rec equal l len p =
len = 0

||
List.hd l = List.hd p && equal (List.tl l) (len - 1) (List.tl p)

let rec search_list_inner p len_p l len_l =
len_p <= len_l

&&
(equal l len_p p ||
search_list_inner p len_p (List.tl l) (len_l - 1))

let search_list p l =
search_list_inner p (List.length p) l (List.length l)

This is now about as efficient as our simple approach can get.

Searching in strings

For practical applications, we shall often need to search within strings, or other such random-access
structures. Our first list version generalizes easily:

Chapter 9. Searching for Things 65

search : string → string → bool

let rec search p s =
String.length p <= String.length s

&&
(String.sub s 0 (String.length p) = p ||
search p (String.sub s 1 (String.length s - 1)))

This time, there is no problem with String.length since, unlike List.length, it runs in constant time.
We do have the overhead of the first String.sub, analogous to the Util.take in the list version. The
second String.sub is also a problem since, unlike List.tl, it creates a new string.

To solve this, we can define an auxiliary function at which, given pattern p, string s and the length l
to test, together with the position in the pattern pp and in the main string sp, tests for equality. This is
similar to equal in our lists example.

at : string → int → string → int → int → bool
search' : int → string → string → bool
search : string → string → bool

let rec at p pp s sp l =
l = 0 || p.[pp] = s.[sp] && at p (pp + 1) s (sp + 1) (l - 1)

let rec search' n p s =
String.length p <= String.length s - n

&&
(at p 0 s n (String.length p) || search' (n + 1) p s)

let search = search' 0

The search' function itself has a counter for how far along the main string it is. We initialize this to zero
in search.

More flexible searches

We can make our searching function more interesting by allowing the use of some special characters. We
shall introduce only these simple constructs:

• A ? character matches zero or one instances of the following character. For example, the pattern
?abc matches abc, bc, and dbc;

• A * character matches zero or more instances of the following character. So, the pattern *abc
matches bc, abc, and aaabc;

• A + character matches one or more instances of the following character. For example, the pattern
+abc matches abc and aaabc but not bc or dbc.

Let us add the ? character to begin with. First, we must alter our search' function’s terminating condition
– we can no longer just finish when the pattern is longer than the remaining part of the string – the length
of the pattern and the length of the characters matching that pattern are no longer always equal. We now

66 Chapter 9. Searching for Things

continue only when the position n is less than the length of the string, or it is equal to the length of the
string and that length is zero (the latter case is required so that the pattern ?a matches the empty string).

search' : int → string → string → bool
search : string → string → bool

let rec search' n p s =
(n < String.length s || n = 0 && String.length s = 0) &&
(at p 0 s n || search' (n + 1) p s)

let search = search' 0

Now we can alter the at function itself. We have an initial terminating condition – if the pattern has been
used up entirely, we must have matched it. Otherwise, we match on the next character in the pattern, to
see if the next part of the pattern matches and, if it does, calculate jump_p (the amount to move forward in
the pattern) and jump_s (the amount to move forward in the string).

at : string → int → string → int → bool

let rec at p pp s sp =
pp > String.length p - 1 || whole pattern used – match
match

match p.[pp] with
| '?' ->

if pp + 1 > String.length p - 1 then None end pattern
else if sp > String.length s - 1 then Some (2, 0) end string
else if p.[pp + 1] = s.[sp] then Some (2, 1) the character
else Some (2, 0) any other character

| c ->
if sp < String.length s && c = s.[sp] then

Some (1, 1)
else

None
with

None -> false match failure – stop
| Some (jump_p, jump_s) ->

at p (pp + jump_p) s (sp + jump_s) match success – continue

Note the behaviour of the ? case carefully, with regard to its specification – this kind of matching code can
be rather subtle. To deal with * we must have a way of matching zero or more instances of a character,
moving as far along the string as possible. The function swallow_all below, given a character ch, a string
p and a position sp, returns the number of characters which match ch starting at sp. We can then add a
match case for the * specifier, as shown in Figure 9.1.

The + character can be added with swallow_all too, but we must check that there is at least one
matching character. Figure 9.2 shows the whole program in one place.

Chapter 9. Searching for Things 67

swallow_all : char → string → int → int
at : string → int → string → int → bool

let swallow_all ch p sp =
let x = ref sp in
while !x < String.length p && p.[!x] = ch do x := !x + 1 done;
!x

let rec at p pp s sp =
pp > String.length p - 1 || whole pattern used – match
match

match p.[pp] with
| '?' ->

if pp + 1 > String.length p - 1 then None end pattern
else if sp > String.length s - 1 then Some (2, 0) end string
else if p.[pp + 1] = s.[sp] then Some (2, 1) the character
else Some (2, 0) any other character

| '*' ->
if pp + 1 > String.length p - 1 then None else end pattern

Some (2, swallow_all p.[pp + 1] p sp) read zero or more
else None did not match

| c ->
if sp < String.length s && c = s.[sp] then
Some (1, 1)

else
None

with
None -> false match failure – stop

| Some (jump_p, jump_s) ->
at p (pp + jump_p) s (sp + jump_s) match success – continue

Figure 9.1

68 Chapter 9. Searching for Things

swallow_all : char → string → int → int
at : string → int → string → int → bool
search' : int → string → string → bool
search : string → string → bool

let swallow_all ch p sp =
let x = ref sp in

while !x < String.length p && p.[!x] = ch do x := !x + 1 done;
!x

let rec at p pp s sp =
pp > String.length p - 1 || whole pattern used – match
match

match p.[pp] with
| '?' ->

if pp + 1 > String.length p - 1 then None end pattern
else if sp > String.length s - 1 then Some (2, 0) end string
else if p.[pp + 1] = s.[sp] then Some (2, 1) the character
else Some (2, 0) any other character

| '*' ->
if pp + 1 > String.length p - 1 then None else end pattern

Some (2, swallow_all p.[pp + 1] p sp) read zero or more
| '+' ->

if pp + 1 > String.length p - 1 then None end pattern
else if sp > String.length s - 1 then None end string
else if p.[pp + 1] = s.[sp] then

Some (2, swallow_all p.[pp + 1] p sp) read one or more
else None did not match

| c ->
if sp < String.length s && c = s.[sp] then
Some (1, 1)

else
None

with
None -> false match failure – stop

| Some (jump_p, jump_s) ->
at p (pp + jump_p) s (sp + jump_s) match success – continue

let rec search' n ss s =
(n < String.length s || n = 0 && String.length s = 0) &&
(at ss 0 s n || search' (n + 1) ss s)

let search = search' 0

Figure 9.2

Chapter 9. Searching for Things 69

Questions

1. Write a function to return the number of matches of one string in another a) when all matches are
considered and b) when only non-overlapping matches are considered.

2. Write functions which return the position and length of the longest prefix of a string in another.
That is to say, the longest initial part of the pattern which matches anywhere in the string.

3. Compare the speed of the first two versions of search given in this chapter.

4. Add the special symbol \ to our final search program. It indicates that the following symbol is not a
special symbol, but a normal character. Note that, we must write '\\' for that character in OCaml
code.

5. Add a labelled argument of type bool whose value, when true, indicates a case-insensitive search.

Chapter 10

Finding Permutations

How can we calculate the n! permutations of a given list of length n? For example, given the list [1; 2;
3] we should like to find [[1; 2; 3]; [2; 1; 3]; [2; 3; 1]; [1; 3; 2]; [3; 1; 2]; [3; 2; 1]] or
similar (we are not concerned with the order of the list of permutations). So, we require a function of type
α list → α list list.

Sometimes it is useful with a hard problem like this to simply start writing, working out what gaps
there are, and then filling them in. The base case for our perms function is trivial: there is one permutation
of the empty list, namely the empty list itself:

perms : α list → α list list

let perms p =
match p with

[] -> [[]]

For the main case, let us try the most simple decomposition. We calculate the permutations of the tail for
free with recursion, and then combine the result in some way with the head:

perms : α list → α list list

let rec perms p =
match p with

[] -> [[]]
| h::t -> combine h (perms t)

Here, combine is a function we have yet to concoct. It must take a list of permutations, such as [[3;
2]; [2; 3]] and a single element, such as 1, and produce [[1; 2; 3]; [2; 1; 3]; [2; 3; 1]; [1; 3;
2]; [3; 1; 2]; [3; 2; 1]]. The elements of this list can be produced by placing 1 in each possible
place in each list in [[3; 2]; [2; 3]]. So first, we will reduce the problem by using List.map with an
as-yet-unwritten function interleave, combining the results with List.concat:

71

72 Chapter 10. Finding Permutations

combine : α → α list list → α list
perms : α list → α list list

let combine x ps =
List.concat (List.map (interleave x) ps)

let rec perms p =
match p with

[] -> [[]]
| h::t -> combine h (perms t)

Now, we just need to build the function interleave which takes an item, such as 1 and a list such as [2;
3] and builds the list [[1; 2; 3]; [2; 1; 3]; [2; 3; 1]] by placing the item at each possible position
in the list.

interleave : α → α list → α list → α list list

let rec interleave e seen l =
match l with

[] -> [seen @ [e]]
| x::xs -> (seen @ e :: x :: xs) :: interleave e (seen @ [x]) xs

This function maintains a list of the elements already seen (which is initially empty), building each new
list. When the input list is empty, the final one is generated. Thus, we avoid any kind of counter to know
when we are finished. For example, consider a call to interleave in our example:

interleave 1 [] [2; 3]

=⇒ ([] @ [1; 2; 3]) :: interleave 1 ([] @ [2]) [3]

=⇒ [1; 2; 3] :: interleave 1 [2] [3]

=⇒ [1; 2; 3] :: (([2] @ 1 :: 3 :: []) :: interleave 1 ([2] @ [3]) [])

=⇒ [1; 2; 3] :: ([2; 1; 3] :: interleave 1 [2; 3] [])

=⇒ [1; 2; 3] :: ([2; 1; 3] :: [[2; 3] @ [1]]

=⇒ [[1; 2; 3]; [2; 1; 3]; [2; 3; 1]]

Now we can write the whole thing out:

Chapter 10. Finding Permutations 73

interleave : α → α list → α list → α list list
combine : α → α list list → α list
perms : α list → α list list

let rec interleave e seen l =
match l with

[] -> [seen @ [e]]
| x::xs -> (seen @ e :: x :: xs) :: interleave e (seen @ [x]) xs

let combine x ps =
List.concat (List.map (interleave x []) ps)

let rec perms p =
match p with

[] -> [[]]
| h::t -> combine h (perms t)

Here are the 24 permutations of the list [1; 3; 5; 7]:

perms [1; 3; 5; 7];;
- : int list list =
[[1; 3; 5; 7]; [3; 1; 5; 7]; [3; 5; 1; 7]; [3; 5; 7; 1]; [1; 5; 3; 7];
[5; 1; 3; 7]; [5; 3; 1; 7]; [5; 3; 7; 1]; [1; 5; 7; 3]; [5; 1; 7; 3];
[5; 7; 1; 3]; [5; 7; 3; 1]; [1; 3; 7; 5]; [3; 1; 7; 5]; [3; 7; 1; 5];
[3; 7; 5; 1]; [1; 7; 3; 5]; [7; 1; 3; 5]; [7; 3; 1; 5]; [7; 3; 5; 1];
[1; 7; 5; 3]; [7; 1; 5; 3]; [7; 5; 1; 3]; [7; 5; 3; 1]]

Note that our function does not work properly when there are duplicates in the list – it will treat each item
as if it were different:

perms [1; 1; 2];;
- : int list list =
[[1; 1; 2]; [1; 1; 2]; [1; 2; 1]; [1; 2; 1]; [2; 1; 1]; [2; 1; 1]]

In this implementation, we run into problems with the lack of tail recursion well before we run out of
memory to store the permutations:

List.length (perms [1; 2; 3; 4; 5; 6; 7; 8]);;
- : int = 40320
List.length (perms [1; 2; 3; 4; 5; 6; 7; 8; 9]);;
- : int = 362880
List.length (perms [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]);;
Stack overflow during evaluation (looping recursion?).

To fix this up, we must rewrite interleave to be tail recursive by adding an accumulating argument:

74 Chapter 10. Finding Permutations

interleave : α → α list → α list → α list list

let rec interleave acc e seen l =
match l with

[] -> (seen @ [e]) :: acc
| x::xs ->

interleave ((seen @ e :: x :: xs) :: acc) e (seen @ [x]) xs

Now, we can go as far as we have time and memory (though the permutations are in a different order –
can you fix that?)

Another method of finding permutations, which gives a shorter solution, is to choose each element of
the input list and use that as the first element, prepending it to each of the permutations of the remaining
list. First, let us define a function to remove the (first) occurrence of a given element from a list:

without : α → α list → α list

let rec without x l =
match l with
[] -> []

| h::t -> if h = x then t else h :: without x t

It need not be tail-recursive, since this list will always be small. Now, we can write the new perms function.
The base case is the same. In the main case, we use List.map twice. The inner map prepends a given
element to each of the permutations of the list without that element. The outer map uses that over each of
the elements of the input, selecting each in turn as the first element. The results are then concatenated.

perms : α list → α list list

let rec perms l =
match l with

[] -> [[]]
| l ->

List.concat
(List.map

(fun x ->
List.map (fun l -> x :: l) (perms (without x l)))

l)

This function has the advantage of producing the items in proper lexicographic (dictionary) order:

[[1; 2; 3]; [1; 3; 2]; [2; 1; 3]; [2; 3; 1]; [3; 1; 2]; [3; 2; 1]]

Permutations one at a time

There is a well-known imperative algorithm for generating the lexicographically-next permutation given
the current one. We can use this to build a function to generate all the permutations without the heavy

Chapter 10. Finding Permutations 75

recursion of our previous programs and, more interestingly, to build a lazy list of all the permutations,
which requires minimal computation each time a new permutation is needed.

We begin with a sorted array, such as [|1; 2; 3|]. This is the first permutation. We generate new
permutations until the array is in reverse-sorted order – [|3; 2; 1|] – this is the final permutation. In
order to find the lexicographically-next permutation there are four steps:

1. Find the right-most item which is smaller than its next item. Call this the “first” item. This is the
item which must be altered to find the permutation which is the smallest distance from the current
one in the lexicographic order.

2. Find the smallest item to the right of the “first” item which is greater than it. Call this the “last” item.
This is the item which will go in the position of the “first” item.

3. Swap these two characters.

4. Sort everything to the right of the original index of the “first” item into lexicographic order. This
ensures we have selected the next permutation, not any later one.

Marking the first item with F and the last item with L, we have [|1; 2F; 3L|] −→ [|1F; 3; 2L|] −→
[|2; 1F; 3L|] −→ [|2F; 3L; 1|] −→ [|3; 1F; 2L|] −→ [|3; 2; 1|]. The first function finds the
index of the “first item” in an array:

first : α array → int

let first arr =
let f = ref (Array.length arr - 1) in
for x = 0 to Array.length arr - 2 do

if arr.(x) < arr.(x + 1) then f := x
done;
!f

The corresponding last function is a little more awkward, needing to check two conditions and using a
special initializer, rather than simply initializing with the last element as first does.

last : α array → int → int

let last arr f =
let c = ref (-1) in

for x = Array.length arr - 1 downto f + 1 do
if arr.(x) > arr.(f) && (!c = (-1) || arr.(x) < arr.(!c))
then c := x

done;
!c

Two simple utility functions, to swap given indices in an array, and sort a sub-array given its offset and
length:

76 Chapter 10. Finding Permutations

swap : α array → int → int → unit
sort_subarray : α array → int → int → unit

let swap arr a b =
let t = arr.(a) in
arr.(a) <- arr.(b);
arr.(b) <- t

let sort_subarray arr o l =
let sub = Array.sub arr o l in
Array.sort compare sub;
Array.blit sub 0 arr o l

Now we are ready to write next_permutation:

next_permutation : α array → α array

let next_permutation arr_in =
let arr = Array.copy arr_in in
let f = first arr in
let c = last arr f in

swap arr f c;
sort_subarray arr (f + 1) (Array.length arr - 1 - f);
arr

We define a predicate for non-increasing-ness:

non_increasing : α array → bool

let non_increasing arr =
Array.length arr <= 1 ||
let r = ref true in
for x = 0 to Array.length arr - 2 do

if arr.(x + 1) > arr.(x) then r := false
done;
!r

And, finally, we are finished:

Chapter 10. Finding Permutations 77

all_permutations : α array → α array array

let all_permutations arr =
let copy = Array.copy arr in

Array.sort compare copy;
let perm = ref copy in
let perms = ref [copy] in
while not (non_increasing !perm) do
perm := next_permutation !perm;
perms := !perm :: !perms;

done;
Array.of_list (List.rev !perms)

Note that this imperative algorithm works correctly with repetitions of elements – it will include the
permutation only once. We can now generate a repeating lazy list of all the permutations of a given list,
using our standard lazy list type from Chapter 2:

perms : α array → α array lazylist

let rec perms x =
Cons (x, fun () ->

if non_increasing x then
let c = Array.copy x in

Array.sort compare c;
perms c

else
perms (next_permutation x))

This very imperative algorithm has now been dressed in functional clothes.

78 Chapter 10. Finding Permutations

Questions

1. Write a function to generate all the unordered combinations of items from a list. For example, for
the list [1; 2; 3], the result, whose order is not important, might be [[]; [1]; [2]; [3]; [1;
2]; [1, 3]; [2; 3]; [1; 2; 3]].

2. Generate all the “permicombinations” – that is all the permutations of all the combinations of a
list. For the list [1; 2; 3] this might be [[]; [1]; [2]; [3]; [1; 2]; [2; 1]; [1; 3]; [3; 1];
[2; 3]; [3; 2]; [1; 2; 3]].

3. Write a function to give the list of all possible lists of length n containing just true and false.

4. The sorting phase of the imperative algorithm can be replaced with a simple list reversal, since the
items are already in reverse lexicographic order each after the swap. Implement this.

5. The imperative algorithm could be defined in terms of lists, in a functional fashion. Demonstrate
this.

Chapter 11

Making Sets

In this chapter, we will look at various naive and sophisticated data structures for storing sets. We will
look at their theoretical performance characteristics and time them against one another on various sorts of
data to learn about their performance in practice. Along the way, we will learn about some of OCaml’s
more advanced modular abstraction mechanisms. For each set representation, we will give the following
five functions:

• set_of_list which builds a set from a list (which may contain duplicates). The empty set is built
with set_of_list [];

• list_of_set which returns, in no particular order, a list of the elements in the set;

• insert which inserts a given element into the set, if it is not already present;

• size which returns the number of elements in the set; and

• member which tests if an element is present in the set.

Simple lists

Figure 11.1 exhibits these five functions by representing sets using the built-in list type. They are largely
trivial, save for set_of_list which works by repeated insertion into the existing set.

These functions are not terribly efficient. The member, size, and insert functions take time propor-
tional to the size of the set. The set_of_list function is worse: it takes time proportional to the square
of the size of the set, since it uses insert for each element on a growing list. The only bright spot is
list_of_set which (of course) runs in constant time.

We have not hidden the type of the sets – they may be manipulated by the caller as plain lists – and so
the abstraction is not safe or complete. Here is an interface as a .mli file, abstracting the real type of the
set to just α t .

79

80 Chapter 11. Making Sets

member : α → α list → bool
insert : α → α list → α list
set_of_list : α list → α list
list_of_set : α → α
size : α list → int

let member = List.mem

let insert x l =
if member x l then l else x :: l

let rec set_of_list l =
match l with [] -> [] | h::t -> insert h (set_of_list t)

let list_of_set x = x

let size = List.length

Figure 11.1

type 'a t

val set_of_list : 'a list -> 'a t

val list_of_set : 'a t -> 'a list

val insert : 'a -> 'a t -> 'a t

val size : 'a t -> int

val member : 'a -> 'a t -> bool

Here is the corresponding .ml file with the implementation:

type 'a t = 'a list

let member = List.mem

let insert x l =
if member x l then l else x :: l

let rec set_of_list l =
match l with [] -> [] | h::t -> insert h (set_of_list t)

let list_of_set x = x

let size = List.length

Chapter 11. Making Sets 81

module SetList :
sig

type 'a t
val set_of_list : 'a list -> 'a t
val list_of_set : 'a t -> 'a list
val insert : 'a -> 'a t -> 'a t
val size : 'a t -> int
val member : 'a -> 'a t -> bool

end
=

struct
type 'a t = 'a list

let member = List.mem

let insert x l =
if member x l then l else x :: l

let rec set_of_list l =
match l with [] -> [] | h::t -> insert h (set_of_list t)

let list_of_set x = x

let size = List.length
end

Figure 11.2

Recall that, by hiding the implementation behind an interface, we can swap implementations at will,
making them more efficient, or fixing bugs.

Since we wish to build several of these set implementations, and benchmark them, it is a good time to
look at OCaml’s syntax for putting several modules in a single source file. Figure 11.2 exhibits a piece of
OCaml which corresponds to our .ml and .mli file all in one place:
The general syntactic form is:

module module name :
sig

contents of .mli file
end

=
struct

contents of .ml file
end

When this code is pasted into the top level, or loaded in some other way, a new module SetList is available,
with functions like SetList.size available through the given interface.

Since all our different implementations of sets will share the same interface as SetList, we will split this
module definition up using the module type syntax to define the signature, and the include keyword to
use that signature for our module:

82 Chapter 11. Making Sets

module type SetType =
sig

type 'a t
val set_of_list : 'a list -> 'a t
val list_of_set : 'a t -> 'a list
val insert : 'a -> 'a t -> 'a t
val size : 'a t -> int
val member : 'a -> 'a t -> bool

end

module SetList : sig include SetType end =
struct

type 'a t = 'a list

let list_of_set x = x

let insert x l = x :: l

let rec set_of_list l =
match l with [] -> [] | h::t -> insert h (set_of_list t)

let size = List.length

let member = List.mem
end

Thus, we have avoided duplication of the interface. Each new set representation will just need an
implementation.

Performance

Each use of the set data type is different – sometimes there is an initial phase of insertions, followed by
millions of membership tests with no insertions. Sometimes insertions and membership tests are equally
likely. Some functions may not be required at all. We shall consider two benchmarks for insertion:

• the insertion of the integers 1 . . . 50000 in a randomized order; and

• the insertion, in order, of the 50000 integers 1 . . . 50000.

Then, we will, for each of these “ordered” and “unordered” cases:

• perform 50000 membership tests in the range of numbers 1 . . . 100000, so that half are present and
half not;

• calculate the number of elements in the set;

• calculate the size of the set.

Here are the results:

Chapter 11. Making Sets 83

Unordered Ordered
(sets represented with lists)

Insertion 20.5s 17.5s
Membership 34.7s 17.8s
Elements 0s 0s
Size 0s 0s

The big difference is in the time for the membership tests, due to the balance or lack of balance in the tree,
as expected. When we introduce more ways of storing sets, we will do the same tests, and compare the
results.

Binary Search Trees

A binary search tree is a binary tree with the property that all elements in the left sub-tree of each node are
smaller than it, and all elements in the right sub-tree are larger. If the tree is reasonably well balanced, we
can reach any element in time proportional to the logarithm of the number of elements in the set.

Just like the representation of sets, there are multiple representations of sets, depending upon the order
of insertion of the elements. Here are the trees corresponding to the insertion orders 123, 132, 213, 231, 312,
321:

1

2

3

1

3

2

2

31

2

31

3

1

2

3

2

1

We can see that when the items in the set are added in numerical or reverse-numerical order, this data
structure is equivalent to, and has no better performance, than a simple list. The data type is the usual one
for binary trees:

type 'a t = Lf | Br of 'a t * 'a * 'a t

The SetTree module is shown in Figure 11.3.

When the tree is balanced insert and member run in logarithmic time. The size function runs in linear
time, since it must visit every node irrespective of the balance. The same is true of list_of_set. When
unbalanced, insert and member take linear time. We can extend our table now:

84 Chapter 11. Making Sets

module SetTree : sig include SetType end =
struct

type 'a t = Lf | Br of 'a t * 'a * 'a t

let rec list_of_set s =
match s with

Lf -> []
| Br (l, x, r) -> list_of_set l @ [x] @ list_of_set r

let rec insert x s =
match s with
Lf -> Br (Lf, x, Lf)

| Br (l, y, r) ->
if x = y then Br (l, y, r)
else if x < y then Br (insert x l, y, r)
else Br (l, y, insert x r)

let rec set_of_list l =
match l with

[] -> Lf
| h::t -> insert h (set_of_list t)

let rec size s =
match s with

Lf -> 0
| Br (l, _, r) -> 1 + size l + size r

let rec member x s =
match s with

Lf -> false
| Br (_, y, _) when x = y -> true
| Br (l, y, r) -> if x < y then member x l else member x r

end

Figure 11.3

Chapter 11. Making Sets 85

Unordered Ordered Unordered Ordered

(Sets represented with lists) (Sets represented with trees)

Insertion 20.4s 17.5s Insertion 0.09s 116.6s
Membership 34.8s 17.8s Membership 0.02s 33.4s
Elements 0s 0s Elements 0.02s 98.0s
Size 0s 0s Size 0s 0s

Notice that, in the unordered case, performance is dramatically increased for insertion and membership,
by about two hundred times. However, if the elements are inserted in order, the unbalanced tree actually
takes longer to build than its equivalent list. Finding all the elements as a list also takes a huge amount of
time in the ordered insertion case.

Balanced trees

We have seen that binary search trees are only useful if they are reasonably close to balanced. In re-
cent decades, several data structures have been developed which try to keep a binary tree “reasonably
balanced”, such that operations remain efficient. “Red-Black trees” are one such commonly used and
interesting data structure. Red-Black trees were invented by Rudolf Bayer, and the functional formu-
lation presented here is due to Chris Okasaki in his landmark book “Purely Functional Data Structures”
(Cambridge University Press, 1998).

A Red-Black tree is an ordinary binary tree with one addition: each node is either Red or Black. Leaf
nodes are considered Black. The balance is ensured by every operation which alters the tree (in our case,
just insert) so that the following remains true:

• the children of each Red node are Black; and

• each path from root to leaf contains an equal number of Black nodes.

These two rules, together, ensure that the tree is reasonably balanced – the longest path from root to leaf
(Black, Red, Black, Red . . . Black) is no more than twice as long as the shortest path (Black, Black, Black . . .
Black). Thus, the maximum depth of a Red-Black tree is proportional to the logarithm of the number of
elements in the set. Here is an example valid Red-Black tree, with 3 black nodes in each path:

6 B

10 R

12 B

BB

8 B

9 R

BB

7 R

BB

4 B

BB

Here are the types for representing a Red-Black tree – we have just added a new colour field to each branch
of the tree:

86 Chapter 11. Making Sets

type colour = R | B

type 'a t = Lf | Br of colour * 'a t * 'a * 'a t

The list_of_set, size, and member functions are simple to alter: they just ignore the colour field. The
insert function, however, must be modified to preserve the Red-Black properties.

As with ordinary binary search trees, the new node added by insert will be in place of a leaf node.
We colour it Red, to make sure that the invariant that no path can have a differing number of black nodes
in it is not broken. However, this may break the other invariant (that no Red node has a Red parent). It
turns out that, by considering the parent and grandparent of the newly-inserted node, performing a simple
operation, and possibly continuing this process upward, we can restore this invariant, and efficiently. The
following diagrams, à la Okasaki, illustrate the process:

z B

δy R

γx R

βα

−→ y R

z B

δγ

x B

βα

←− z B

δx R

y R

γβ

α

x B

z R

δy R

γβ

α

−→ y R

z B

δγ

x B

βα

←− x B

y R

z R

δγ

β

α

In each case, the nodes x, y, z and the sub-trees α, β, γ, δ remain in the same order, so the binary tree
invariant is preserved. Pattern matching is particularly elegant here, since all but one of our cases have the
same result:

balance : colour × α t × α × α t → α t

let balance t =
match t with
(B, Br (R, Br (R, a, x, b), y, c), z, d)

| (B, Br (R, a, x, Br (R, b, y, c)), z, d)
| (B, a, x, Br (R, Br (R, b, y, c), z, d))
| (B, a, x, Br (R, b, y, Br (R, c, z, d))) ->

Br (R, Br (B, a, x, b), y, Br (B, c, z, d))
| (a, b, c, d) -> Br (a, b, c, d)

Now, we can write the insertion function itself:

Chapter 11. Making Sets 87

insert_inner : α → α t → α t
insert : α → α t → α t

let rec insert_inner x s =
match s with

Lf -> Br (R, Lf, x, Lf)
| Br (c, l, y, r) ->

if x < y
then balance (c, insert_inner x l, y, r)
else if x > y then balance (c, l, y, insert_inner x r)
else Br (c, l, y, r)

let insert x s =
match insert_inner x s with

Br (_, l, y, r) -> Br (B, l, y, r)
| Lf -> assert false

Note that we wrap it in a function to set the root of the tree to Black – balancing will not do this, since the
root has no parent or grandparent to compare with, and so we may otherwise end up with a red root with
a red child. The full module is shown in Figure 11.4.

Since we have guaranteed that the tree will be reasonably balanced, there is no need for tail recursive
functions, even for huge sets. The effect of balanced trees on performance is clear, and there appears to be
little or no slow-down from the more complex Red-Black data structure:

Unordered Ordered Unordered Ordered
(Sets represented with lists) (Sets represented with trees)

Insertion 20.4s 17.5s Insertion 0.09s 116.6s
Membership 34.8s 17.8s Membership 0.02s 33.4s
Elements 0s 0s Elements 0.02s 98.0s
Size 0s 0s Size 0s 0s

Unordered Ordered
(Sets represented with Red-Black trees)

Insertion 0.11s 0.05s
Membership 0.02s 0.02s
Elements 0.03s 0.01s
Size 0s 0s

88 Chapter 11. Making Sets

module SetRedBlack : sig include SetType end =
struct

type colour = R | B

type 'a t = Lf | Br of colour * 'a t * 'a * 'a t

let rec list_of_set s =
match s with
Lf -> []

| Br (_, l, x, r) -> x :: list_of_set l @ list_of_set r

let balance t =
match t with
(B, Br (R, Br (R, a, x, b), y, c), z, d)

| (B, Br (R, a, x, Br (R, b, y, c)), z, d)
| (B, a, x, Br (R, Br (R, b, y, c), z, d))
| (B, a, x, Br (R, b, y, Br (R, c, z, d))) ->

Br (R, Br (B, a, x, b), y, Br (B, c, z, d))
| (a, b, c, d) -> Br (a, b, c, d)

let rec insert_inner x s =
match s with
Lf -> Br (R, Lf, x, Lf)

| Br (c, l, y, r) ->
if x < y

then balance (c, insert_inner x l, y, r)
else if x > y then balance (c, l, y, insert_inner x r)
else Br (c, l, y, r)

let insert x s =
match insert_inner x s with

Br (_, l, y, r) -> Br (B, l, y, r)
| Lf -> assert false

let rec set_of_list l =
match l with
[] -> Lf

| h::t -> insert h (set_of_list t)

let rec size s =
match s with

Lf -> 0
| Br (_, l, _, r) -> 1 + size l + size r

let rec member x s =
match s with

Lf -> false
| Br (_, l, y, r) ->

x = y || if x > y then member x r else member x l
end

Figure 11.4

Chapter 11. Making Sets 89

Hash Tables

A hash table is a data structure designed to provide very fast insertion of and access to data in sets and
maps. It holds a set of buckets 0...n. When we insert a value into the set, it is processed via a hash function
which allocates it to a bucket, in such a manner that there should be a roughly uniform distribution of
values among the buckets. When we need to test membership for an item, the same hash function is
applied, and we need only search in one bucket. If the hash function works well and the number of
buckets is appropriate, lookup is in constant time regardless of how many items are in the set.

For example, if the hash function is x −→ x mod 23 and the data to be inserted is 34, 2, 67, 3, 4, 84,
1467, 7432, 48, 1 then the buckets would be 11, 2, 21, 3, 4, 15, 18, 3, 1, 1. The membership test for 67 now
consists of applying the hash function, and then searching in bucket 21 to see if 67 is there.

The OCaml Standard Library provides a hash table implementation in the module Hashtbl. To build a
hash table for a set, we use a hash table which maps from α to unit, of type (α, unit) Hashtbl.t. It is simple
to build an implementation matching our signature, using the functions Hashtbl.mem, Hashtbl.add,
Hashtbl.create, and Hashtbl.iter, as shown in Figure 11.5.

The disadvantage is that hash tables are mutable data structures, and so operations like insert mutate
the structure. The result of insert, then, alters the set rather than creating a new set. This means that
whilst the SetType interface is technically satisfied, our intended abstraction is actually broken. Such is
mutability. The performance on our benchmarks, however, is clear:

Unordered Ordered Unordered Ordered
(Sets represented with lists) (Sets represented with trees)

Insertion 20.4s 17.5s Insertion 0.09s 116.6s
Membership 34.8s 17.8s Membership 0.02s 33.4s
Elements 0s 0s Elements 0.02s 98.0s
Size 0s 0s Size 0s 0s

Unordered Ordered Unordered Ordered
(Sets represented with Red-Black trees) (Sets represented with hash tables)

Insertion 0.11s 0.06s Insertion 0.014s 0.007s
Membership 0.01s 0.02s Membership 0.012 0.005s
Elements 0.03s 0.01s Elements 0.004s 0.0022s
Size 0s 0s Size 0s 0s

The benchmarking programs may be found in the online resources.

90 Chapter 11. Making Sets

module SetHashtbl : sig include SetType end =
struct

type 'a t = ('a, unit) Hashtbl.t

let list_of_set s =
Hashtbl.fold (fun x () l -> x :: l) s []

let set_of_list l =
let s = Hashtbl.create (List.length l) in
List.iter (fun x -> Hashtbl.add s x ()) l;
s

let member x s = Hashtbl.mem s x

let insert x s =
if not (member x s) then Hashtbl.add s x ();
s

let size = Hashtbl.length
end

Figure 11.5

Chapter 11. Making Sets 91

Questions

1. Compare our set representations with regard to the amount of memory required to create and store
them. You can use the functions from the Gc module in OCaml’s Standard Library to find out
how many words of memory have been allocated before and after allocating a large set in each set
representation.

2. Write functions (naive if necessary) to perform the “union” operation on sets in each representation.
The union of two sets is the set of elements present in one or the other or both of them. After the
operation, both inputs should still be available as sets.

3. OCaml has a built-in Set module. It uses advanced module syntax not discussed here, but you can
build a module for manipulating sets of integers like this:
module S = Set.Make (struct type t = int let compare = compare end)

This new module S provides, amongst others, a type t for sets, and add, elements, mem, empty, and
cardinal functions, whose definitions you can find in the OCaml manual. Use these functions to
build a set module with a similar interface to ours. Comment on its speed for our examples.

4. We can save memory in the definition of Red-Black trees by having two different Br nodes, one for
Red and one for Black, instead of storing the colour. Implement this. How much memory is saved?
How much extra complexity is there in the source code?

Chapter 12

Playing Games

The childhood game of Noughts and Crosses is a combinatorial problem of a large but manageable size.
Let us review the rules, and then see if we can build the game tree (that is, a structure describing all possible
games), and draw some statistics from it.

A 3-by-3 grid is constructed. Two players (O and X) take turns, beginning with O, to place their piece
in an empty space. The game is won if or when a player forms three pieces in a row, column, or diagonally.
The game is drawn if the board is full and no such pattern has been formed. For example, in this board,
player O has won, building a diagonal:

X O
X O X
O X O

Let us consider the shape of the game tree. Clearly, at the top level, it will branch nine ways, since O can
be placed in any square. Then eight ways, seven ways and so on. Once we reach the fifth level, some
of the games have been won (since three pieces from player O may form a line), and so the number of
branches may be reduced. The tree must end after nine levels, since the board must at least be full, even
if no-one has won. A fragment of the game tree is shown in Figure 12.1. Let us begin to construct the
program. We will need a type to represent X, O and the empty square:

type turn = O | X | E

It would be natural to use a nine-tuple, since the board is of a fixed size. Then, though, we lose the ability
to use the standard list-processing functions such as List.map over the boards. So, at the cost of a little
inelegance, we will use a list of length nine instead – in other words a turn list.

We need to terminate the tree when X has won, O has won, or the board is full. Thus we will need to
check all the rows, columns, and diagonals. We do not want to replicate the logic several times or build a
huge pattern match, so it is easiest to write a function which takes a list of nine booleans and just checks for
lines of true. We can then use List.map on the board itself to build these intermediate lists of booleans.

93

94 Chapter 12. Playing Games

• • •
• • •
• • •

• • •
• • •
• • O

• • •
• • •
• X O

• • •
• • •
X • O

• • •
• • X
• • O

• • •
• X •
• • O

• • •
X • •
• • O

• • X
• • •
• • O

• X •
• • •
• • O

X • •
• • •
• • O

• • •
• • •
• O •

• • •
• • •
O • •

• • •
• • O
• • •

• • •
• O •
• • •

• • •
O • •
• • •

• • O
• • •
• • •

• O •
• • •
• • •

O • •
• • •
• • •

Figure 12.1

won : bool list → bool

let won [a; b; c; d; e; f; g; h; i] =
a && b && c || d && e && f || g && h && i || a && d && g ||
b && e && h || c && f && i || a && e && i || c && e && g

We can number the positions in our board:

1 2 3
4 5 6
7 8 9

Now, we can use functions from the List module to write a function to return the numbers of the positions
which are currently empty:

empty : turn list → bool

let empty b =
List.map snd

(List.filter (fun (t, _) -> t = E)
(List.combine b [1; 2; 3; 4; 5; 6; 7; 8; 9]))

This works by building the list of tuples [(X, 1); (E, 2); (E, 3) . . .(O, 9)], filtering out any which
are not empty, and extracting the list of empty positions [2, 3 . . .]. It is also simple to write a function
which, given a board like [E; E; E; E; X; E; O; E; E], a turn like O and a number such as 8, will fill in
the correct slot in the board to produce [E; E; E; E; X; E; O; X; E]. The take and drop functions from
our Util module (described on page xiii) are ideal:

Chapter 12. Playing Games 95

replace : turn → turn list → int → turn list

let replace turn board p =
Util.take board (p - 1) @ [turn] @ Util.drop board p

One more simple function is required before we can write the main tree-building function, and that is to
change whose turn it is:

flip_turn : turn → turn

let flip_turn t =
match t with O -> X | X -> O

What should the type of the game tree be? Each node needs a list of turn elements representing the board,
and a list of zero or more trees representing the game resulting from each possible move. Since the list can
have zero elements, we need no separate leaf constructor:

type tree = Move of turn list * tree list

Now we may construct the main function. Our job is to build, given a turn (X or O) and the current board,
the tree starting at that board. If the board has been won by either player, the list of next nodes is empty,
and the recursion stops. If not, we calculate the empty positions, build a new board with each empty
position filled in with the current turn, and then map next_moves over each of those.

next_moves : turn → turn list → tree

let rec next_moves turn board =
let next =

if
won (List.map ((=) O) board) ||
won (List.map ((=) X) board)

then
[]

else
List.map

(next_moves (flip_turn turn))
(List.map (replace turn board) (empty board))

in
Move (board, next)

Note that the recursion stops when a board is full (drawn) because empty returns the empty list in this
case. Now we can build the game tree itself, which might take a second or so:

game_tree : tree

let game_tree =
next_moves O [E; E; E; E; E; E; E; E; E]

96 Chapter 12. Playing Games

This results in the tree shown below.

val game_tree : tree =
Move ([E; E; E; E; E; E; E; E; E],
[Move ([O; E; E; E; E; E; E; E; E],

[Move ([O; X; E; E; E; E; E; E; E],
[Move ([O; X; O; E; E; E; E; E; E],

[Move ([O; X; O; X; E; E; E; E; E],
[Move ([O; X; O; X; O; E; E; E; E],
[Move ([O; X; O; X; O; X; E; E; E],

[Move ([O; X; O; X; O; X; O; E; E], []);
Move ([O; X; O; X; O; X; E; O; E],
[Move ([O; X; O; X; O; X; X; O;

[Move ([O; X; O; X; O; X; X; O; O], [])]);
Move ([O; X; O; X; O; X; E; O; X],
[Move ([O; X; O; X; O; X; O; O; X], [])])]);

Move ([O; X; O; X; O; X; E; E; O], [])]);
Move ([O; X; O; X; O; E; X; E; E],
[Move ([O; X; O; X; O; O; X; E; E],

[Move ([O; X; O; X; O; O; X; X; E],
[Move ([O; X; O; X; O; O; X; X; O], [])]);

Move ([O; X; O; X; O; O; X; E; X],
[Move ([O; X; O; X; O; O; X; O; X], [])])]);

Move ([O; X; O; X; O; E; X; O; E],
[Move ([O; X; O; X; O; X; X; O; E],

[Move ([O; X; O; X; O; X; X; O; O], [])]);
Move ([O; X; O; X; O; E; X; O; X],

[Move ([O; X; O; X; O; O; X; O; X], [])])]);
...]);

...]);
...]);

...]);
...]);

...]);
...])

You can see the first ending position in this game tree is [O; X; O; X; O; X; O; E; E]. You can also
see several drawn games. We can now use this game tree to calculate how many games are won by a
given player:

num_wins : term → tree → int

let rec num_wins turn (Move (b, bs)) =
(if won (List.map ((=) turn) b) then 1 else 0) +
List.fold_left (+) 0 (List.map (num_wins turn) bs)

This tells us, reasonably quickly, that O wins 131184 games. The questions at the end of this chapter ask
you to work out more of these numbers. Here is the full code in one place:

Chapter 12. Playing Games 97

type turn = O | X | E

let won [a; b; c; d; e; f; g; h; i] =
a && b && c || d && e && f || g && h && i || a && d && g ||
b && e && h || c && f && i || a && e && i || c && e && g

let replace turn board p =
Util.take board (p - 1) @ [turn] @ Util.drop board p

let flip_turn t =
match t with O -> X | X -> O

let empty b =
List.map snd

(List.filter (fun (t, _) -> t = E)
(List.combine b [1; 2; 3; 4; 5; 6; 7; 8; 9]))

type tree = Move of turn list * tree list

let rec next_moves turn board =
let next =
if

won (List.map ((=) O) board) ||
won (List.map ((=) X) board)

then
[]

else
List.map

(next_moves (flip_turn turn))
(List.map (replace turn board) (empty board))

in
Move (board, next)

let game_tree =
next_moves O [E; E; E; E; E; E; E; E; E]

In the questions, you will extract the rest of the statistics from the tree, and build some alternative
representations.

98 Chapter 12. Playing Games

Questions

1. In how many cases does X win? How many possible different games are there? How many end in a
draw?

2. Build a lazy version of our game tree, where nodes are only created when explored. Now write a
function to work out how many times O and X win or the game is drawn if O goes first and picks
the centre slot. What about if O picks a corner? The middle of a side?

3. Another way to check if someone has won is to rearrange the board numbers into a so-called magic
square, where each row, column or diagonal sums to 15:

8 1 6
3 5 7
4 9 2

Now, a player has won if they have any three positions summing to 15. Re-implement our game
tree program using this alternative representation.

GENERATING PDF DOCUMENTS

an extended example

Chapter 13

Representing Documents

In this chapter we will define a data type for representing a PDF document. PDF is a structured format for
describing a wide variety of graphical and textual data. The PDF file format itself is large and complex,
but we will introduce only the parts required for our examples. It is relatively easy to write PDF files but
rather harder to read them, so we will concentrate on creating PDF data structures in memory, and then
writing them to valid files. Here is an example PDF, as it might be displayed in a PDF viewer:

Hello, World!

Here is the corresponding code, which you would see if you opened the PDF file in a plain text editor:

%PDF-1.1
1 0 obj
<</Type /Page

/Parent 3 0 R
/Resources

101

102 Chapter 13. Representing Documents

<</Font
<</F0

<</Type /Font /Subtype /Type1 /BaseFont /Times-Italic>>>>>>
/MediaBox [0 0 595.275590551 841.88976378]
/Rotate 0 /Contents [4 0 R] >>

endobj
2 0 obj
<</Type /Catalog /Pages 3 0 R>>
endobj
3 0 obj
<</Type /Pages /Kids [1 0 R] /Count 1>>
endobj
4 0 obj
<</Length 53>>
stream
1 0 0 1 50 770 cm BT /F0 36 Tf (Hello, World!) Tj ET
endstream
endobj
xref
0 5
0000000000 65535 f
0000000015 00000 n
0000000200 00000 n
0000000245 00000 n
0000000296 00000 n
trailer
<</Size 5 /Root 2 0 R>>
startxref
397
%%EOF

Rather complicated, as we can see. Our first job is to define a pleasant OCaml data type for PDF documents,
which can then be flattened to the format above when written to a file.

The main body of a PDF file is a set of numbered objects – there are four in the example above, from 1
0 obj to 4 0 obj. Each one contains some structured data, such as the dictionary <</Type /Pages /Kids
[1 0 R] /Count 1>> which associates the keys /Type, /Kids, and /Count to the name /Pages, the array
[1 0 R], and the integer 1 respectively. Before and after the main body is some ancillary data, most of
which we do not need to hold in our data structure – it is generated upon writing. Here are all the kinds of
data we will be using:

• Booleans, like true and false

• Integers, such as 4, 256, −1

• Floating-point numbers such as 1.585

• Strings, like (a string) which are sequences of characters within parentheses

• Names, like /Name

• Ordered arrays of objects such as [1 2 4]

• Dictionaries, which are unordered collections of key-value pairs, where the keys are names. For
example, <</One 1 /Two 2 /Three 3>>.

Chapter 13. Representing Documents 103

• Streams, like object 4 in the example above, which are arbitrary sequences of bytes.

• Indirect references, like 4 0 R which point to another object by its number (here, object 4).

Here is an OCaml data type to hold such data:

type pdfobject =
Boolean of bool

| Integer of int
| Float of float
| String of string
| Name of string
| Array of pdfobject list
| Dictionary of (string * pdfobject) list
| Stream of pdfobject * string
| Indirect of int

Note that it is recursive, mirroring the structure of the data. For example, object 3 in the example above,
that is <</Type /Pages /Kids [1 0 R] /Count 1>>, will be represented as:

Dictionary
[("/Type", Name "/Pages"); ("/Kids", Array [Indirect 1]); ("/Count", Integer 1)]

Now, we need a type to represent the whole document, which contains a list of these objects, the PDF
version number (1.1 in the example above), and the trailer dictionary (<</Size 5 /Root 2 0 R>> above).
Everything else is generated upon writing. It is traditional to name the main type of a module t:

type t =
{version : int * int;
objects : (int * pdfobject) list;
trailer : pdfobject}

We put these two types into pdf.ml and pdf.mli. Here is how we might build an instance of this data
type representing our example PDF:

let objects =
[(1,

Pdf.Dictionary
[("/Type", Pdf.Name "/Page");
("/Parent", Pdf.Indirect 3);
("/Resources",

Pdf.Dictionary
[("/Font",
Pdf.Dictionary
[("/F0",

Pdf.Dictionary
[("/Type", Pdf.Name "/Font");
("/Subtype", Pdf.Name "/Type1");
("/BaseFont", Pdf.Name "/Times-Italic")])])]);

("/MediaBox",
Pdf.Array

[Pdf.Float 0.; Pdf.Float 0.;

104 Chapter 13. Representing Documents

Pdf.Float 595.275590551; Pdf.Float 841.88976378]);
("/Rotate", Pdf.Integer 0);
("/Contents", Pdf.Array [Pdf.Indirect 4])]);

(2,
Pdf.Dictionary

[("/Type", Pdf.Name "/Catalog");
("/Pages", Pdf.Indirect 3)]);

(3,
Pdf.Dictionary

[("/Type", Pdf.Name "/Pages");
("/Kids", Pdf.Array [Pdf.Indirect 1]);
("/Count", Pdf.Integer 1)]);

(4,
Pdf.Stream

(Pdf.Dictionary [("/Length", Pdf.Integer 53)],
"1 0 0 1 50 770 cm BT /F0 36 Tf (Hello, World!) Tj ET"))]

let hello =
{Pdf.version = (1, 1);
Pdf.objects = objects;
Pdf.trailer =
Pdf.Dictionary
[("/Size", Pdf.Integer 5);
("/Root", Pdf.Indirect 2)]}

The advantage of using this data structure as opposed to generating the PDF file directly is that it
may be programmatically manipulated with ease, using pattern matching and other standard OCaml
techniques. Note that the content of the page itself "1 0 0 1 50 770 cm BT /F0 36 Tf (Hello, World!)
Tj ET" remains a plain string. We shall look at this separate language soon.

In the next three chapters, we will learn how to write this representation to a file, and add our own
text and graphics to the page.

Chapter 13. Representing Documents 105

Questions

1. Draw the graph of the relationships, via indirect references such as 3 0 R, of the objects 1, 2, 3, 4 and
the trailer dictionary.

2. Represent the following PDF objects using our data type:

/Name

(Quartz Crystal)

<</Type /ObjStm /N 100 /First 807 /Length 1836 /Filter /FlateDecode>>

[1 2 1.5 (black)]

[1 2 0 R]

3. PDF files can contain arbitrary objects, which will be ignored by a PDF reader if they are not
understood. Design a way of representing items of the following type using one or more PDF
objects:

type tree = Lf | Br of tree * int * tree

4. Write a function of type pdfobject → pdfobject which, given an object, replaces the value of any
dictionary entry with key /Rotate to 90.

Chapter 14

Writing Documents

We have built a representation for PDF documents to be held in memory, and defined an example
document. Now, we must build functions to write this to file. Recall our example file from the last chapter:

%PDF-1.1
1 0 obj
<</Type /Page

/Parent 3 0 R
/Resources

<</Font
<</F0

<</Type /Font /Subtype /Type1 /BaseFont /Times-Italic>>>>>>
/MediaBox [0 0 595.275590551 841.88976378]
/Rotate 0 /Contents [4 0 R] >>

endobj
2 0 obj
<</Type /Catalog /Pages 3 0 R>>
endobj
3 0 obj
<</Type /Pages /Kids [1 0 R] /Count 1>>
endobj
4 0 obj
<</Length 53>>
stream
1 0 0 1 50 770 cm BT /F0 36 Tf (Hello, World!) Tj ET
endstream
endobj
xref
0 5
0000000000 65535 f
0000000015 00000 n
0000000200 00000 n
0000000245 00000 n
0000000296 00000 n
trailer
<</Size 5 /Root 2 0 R>>

107

108 Chapter 14. Writing Documents

startxref
397
%%EOF

It consists, we remember, of a header, then some objects (here, four), and a trailer. We will need four
functions:

1. The function string_of_pdfobject to make a string from a Pdf.pdfobject, for example making the
string "<</Type /Pages /Kids [1 0 R] /Count 1>>" from the pdfobject Dictionary [("/Type",
Name "/Pages"); ("/Kids", Array [Indirect 1]); ("/Count", Integer 1)];

2. The function write_header to write the header (i.e. everything before the objects);

3. The function write_trailer to write the trailer (i.e. everything after the objects); and

4. The main function pdf_to_file which uses these three functions to write a Pdf.t to a file under the
given file name.

The function string_of_pdfobject is best expressed as a set of mutually-recursive functions introduced
with the let rec ... and ... construct. To give it as a single function is possible, but would be rather
large, and so harder to read and edit. Let us present it piece-by-piece and then all at once.

First, the main part. Given an object we wish to produce its string, assuming that string_of_array,
string_of_dictionary, and string_of_stream exist:

string_of_pdfobject : Pdf.pdfobject → string

let rec string_of_pdfobject obj =
match obj with

Pdf.Boolean b -> string_of_bool b
| Pdf.Integer i -> string_of_int i
| Pdf.Float f -> string_of_float f
| Pdf.String s -> "(" ^ s ^ ")"
| Pdf.Name n -> n
| Pdf.Array a -> string_of_array a
| Pdf.Dictionary d -> string_of_dictionary d
| Pdf.Stream (dict, data) -> string_of_stream dict data
| Pdf.Indirect i -> Printf.sprintf "%i 0 R" i

The cases are all simple, except for the ones we have put aside to be implemented separately. Strings must
be put between parentheses, indirect references are printed as 2 0 R etc.

To build a string from an Array, we need to start with an open square bracket, add the string for each
Pdf.pdfobject in the array (which may be arbitrarily complex, of course), and put spaces between them.
Then we end with a close square bracket:

Chapter 14. Writing Documents 109

string_of_array : Pdf.pdfobject → string

let rec string_of_array a =
let b = Buffer.create 100 in

Buffer.add_string b "[";
List.iter

(fun s ->
Buffer.add_char b ' ';
Buffer.add_string b (string_of_pdfobject s))

a;
Buffer.add_string b "]";
Buffer.contents b

It is natural to use the Buffer module from the Standard Library to collect these strings together. It is also
more efficient than using string concatenation. Notice we do not add an initial space after the square
bracket, but do before the closing square bracket, for symmetry. The string_of_dictionary function is
somewhat similar:

string_of_dictionary : Pdf.pdfobject → string

let rec string_of_dictionary d =
let b = Buffer.create 100 in

Buffer.add_string b "<<";
List.iter

(fun (k, v) ->
Buffer.add_char b ' ';
Buffer.add_string b k;
Buffer.add_char b ' ';
Buffer.add_string b (string_of_pdfobject v))

d;
Buffer.add_string b " >>";
Buffer.contents b

Now for string_of_stream. A stream in PDF is written like this:

stream dictionary
stream
stream data
endstream

This is simple with the Buffer module too:

110 Chapter 14. Writing Documents

string_of_stream : Pdf.pdfobject → string → string

let rec string_of_stream dict data =
let b = Buffer.create 100 in
List.iter (Buffer.add_string b)

[string_of_pdfobject dict; "\nstream\n"; data; "\nendstream"];
Buffer.contents b

The code for these four functions is collected together in Figure 14.1. Now that we can build a string
from any Pdf.pdfobject, we can proceed to build the write_header, write_trailer, and write_objects
functions, so that we have everything we need for the final pdf_to_file function.

The PDF header consists of %%PDF-m.n where m and n are the major and minor version numbers. This
is easy to build with Printf.sprintf:

write_header : out_channel → Pdf.t → unit

let write_header o {Pdf.version = (major, minor)} =
output_string o

(Printf.sprintf "%%PDF-%i.%i\n" major minor)

The write_objects function, which is given a list of (int × Pdf.pdfobject) pairs, sorts the objects by their
number, and then outputs each object using string_of_pdfobject. For example, the pair

(3,
Dictionary
[("/Type", Name "/Pages"); ("/Kids", Array [Indirect 1]); ("/Count", Integer 1)])

will be written to file like this:

3 0 obj
<< /Type /Pages /Kids [1 0 R] /Count 1 >>
endobj

The function collects and returns a list of the byte offsets of the objects written, since this will be needed to
write the trailer section, which we shall describe in a moment.

write_objects : out_channel → (int × Pdf.pdfobject) → int list

let write_objects o objs =
let offsets = ref [] in
List.iter
(fun (objnum, obj) ->

offsets := pos_out o :: !offsets;
output_string o (Printf.sprintf "%i 0 obj\n" objnum);
output_string o (string_of_pdfobject obj);
output_string o "\nendobj\n")

(List.sort objs);
List.rev !offsets

Chapter 14. Writing Documents 111

string_of_array : Pdf.pdfobject list → string
string_of_dictionary : (string × Pdf.pdfobject) list → string
string_of_stream : Pdf.pdfobject → string → string
string_of_pdfobject : Pdf.pdfobject → string

let rec string_of_array a =
let b = Buffer.create 100 in

Buffer.add_string b "[";
List.iter

(fun s ->
Buffer.add_char b ' ';
Buffer.add_string b (string_of_pdfobject s))

a;
Buffer.add_string b "]";
Buffer.contents b

and string_of_dictionary d =
let b = Buffer.create 100 in

Buffer.add_string b "<<";
List.iter

(fun (k, v) ->
Buffer.add_char b ' ';
Buffer.add_string b k;
Buffer.add_char b ' ';
Buffer.add_string b (string_of_pdfobject v))

d;
Buffer.add_string b " >>";
Buffer.contents b

and string_of_stream dict data =
let b = Buffer.create 100 in

List.iter (Buffer.add_string b)
[string_of_pdfobject dict; "\nstream\n"; data; "\nendstream"];

Buffer.contents b

and string_of_pdfobject obj =
match obj with
Pdf.Boolean b -> string_of_bool b

| Pdf.Integer i -> string_of_int i
| Pdf.Float f -> string_of_float f
| Pdf.String s -> "(" ^ s ^ ")"
| Pdf.Name n -> n
| Pdf.Array a -> string_of_array a
| Pdf.Dictionary d -> string_of_dictionary d
| Pdf.Stream (dict, data) -> string_of_stream dict data
| Pdf.Indirect i -> Printf.sprintf "%i 0 R" i

Figure 14.1: Our mutually recursive functions to build a string from a Pdf.pdfobject

112 Chapter 14. Writing Documents

Now, we can write the trailer. That is to say, this section:

xref
0 5
0000000000 65535 f
0000000015 00000 n
0000000230 00000 n
0000000279 00000 n
0000000338 00000 n
trailer
<< /Size 5 /Root 2 0 R >>
startxref
440
%%EOF

This consists largely of a list of the byte offsets of the four objects in the file (15, 230, 279, 338), the trailer
dictionary, and so on. It is not necessary to understand it in detail. This is the first section which would be
read by a PDF reader, to find the actual objects in the file.

write_trailer : out_channel → Pdf.t → int list → unit

let write_trailer o pdf offsets =
let startxref = pos_out o in
output_string o "xref\n";
output_string o
(Printf.sprintf "0 %i\n" (List.length pdf.Pdf.objects + 1));

output_string o "0000000000 65535 f \n";
List.iter

(fun offset ->
output_string o (Printf.sprintf "%010i 00000 n \n" offset))

offsets;
output_string o "trailer\n";
output_string o (string_of_pdfobject pdf.Pdf.trailer);
output_string o "\nstartxref\n";
output_string o (string_of_int startxref);
output_string o "\n%%EOF"

Now the main function is simple. We open the file, write the header, objects, and trailer, and close the file.
In the event of an exception, we close the file to clean up, and re-raise it.

Chapter 14. Writing Documents 113

pdf_to_file : Pdf.t → string → unit

let pdf_to_file pdf filename =
let output = open_out_bin filename in

try
write_header output pdf;
let offsets = write_objects output pdf.Pdf.objects in
write_trailer output pdf offsets;
close_out output

with
e -> close_out output; raise e

This code goes into pdfwrite.ml. The interface pdfwrite.mli is very simple. We expose only
pdf_to_file:

val pdf_to_file : Pdf.t -> string -> unit

Here is the output of our program on the example Pdfhello.hello:

%PDF-1.1
1 0 obj
<< /Type /Page /Parent 3 0 R /Resources << /Font << /F0 << /Type /Font /Subtype /

Type1 /BaseFont /Times-Italic >> >> >> /MediaBox [0. 0. 595.275590551
841.88976378] /Rotate 0 /Contents [4 0 R] >>

endobj
2 0 obj
<< /Type /Catalog /Pages 3 0 R >>
endobj
3 0 obj
<< /Type /Pages /Kids [1 0 R] /Count 1 >>
endobj
4 0 obj
<< /Length 53 >>
stream
1 0 0 1 50 770 cm BT /F0 36 Tf (Hello, World!) Tj ET
endstream
endobj
xref
0 5
0000000000 65535 f
0000000015 00000 n
0000000230 00000 n
0000000279 00000 n
0000000338 00000 n
trailer
<< /Size 5 /Root 2 0 R >>
startxref

114 Chapter 14. Writing Documents

440
%%EOF

This loads correctly into a PDF viewer. Notice that some of the spacing is different from the specimen PDF
we had at the top of the chapter – this does not matter. Now we can move on to putting more interesting
content on the page of our PDF documents.

Chapter 14. Writing Documents 115

Questions

1. Modify the code so that arrays and dictionaries do not have spaces at either end of them (these
spaces are not required). For example, we should see [2 0 R] rather than [2 0 R].

2. Build an example PDF with three pages. This will have three entries in its /Kids array, and three
page objects. The page contents may be shared by the three pages if desired. You will need to
number the additional objects carefully.

3. Modify the program to use our byte-by-byte compression algorithm from Chapter 6 to compress
the content stream in the “Hello, World” program. You will need to fix the /Length and add
/Filter /RunLengthDecode to the stream dictionary. Now modify the program to use our bit-by-
bit compression algorithm from the same chapter with /Filter /CCITTFaxDecode. You will need
to add the following entry to the stream dictionary, in addition to altering the /Filter entry:

("/DecodeParms",
Pdf.Dictionary

[("/Rows", Pdf.Integer 1);
("/Columns", Pdf.Integer (52 * 8));
("/BlackIs1", Pdf.Boolean true);
("/EndOfBlock", Pdf.Boolean false)])

The number 52 is the number of bytes of data in our example.

Chapter 15

Pretty Pictures

We have not yet explained the structure of the code which put “Hello, World!” on the page. Here it is
again:

1 0 0 1 50 770 cm BT /F0 36 Tf (Hello, World!) Tj ET

It is a list of operator-operand sequences. Each sequence consists of zero or more operands and one
operator. The sequences in our example are:

Operands Operator

1 0 0 1 50 770 cm

BT

/F0 36 Tf

(Hello, World!) Tj

ET

In this chapter we will introduce a few simple operators for drawing lines and filling shapes (in the next
chapter we discuss adding text and build a basic typesetter). Here are the operators we will be using to
start with:

Operands Operator Description

x y m move to point
x y l line to point

h close path
S stroke path
f fill path

0. . . 1 g set fill grey
0. . . 1 G set stroke grey

Here is a data type, which forms part of the new Pdfpage module, which encodes these operators. We will

117

118 Chapter 15. Pretty Pictures

extend it with new operators when required.

type t =
Move of float * float

| Line of float * float
| Close
| Stroke
| Fill
| FillColour of float
| StrokeColour of float

In order to put these into the PDF document, we will need to convert each set of operands and operator to
a string. This is simple:

string_of_op : Pdfpage.t → string

let string_of_op op =
match op with

Move (x, y) -> Printf.sprintf "%f %f m" x y
| Line (x, y) -> Printf.sprintf "%f %f l" x y
| Close -> "h"
| Stroke -> "S"
| Fill -> "f"
| FillColour g -> Printf.sprintf "%f g" g
| StrokeColour g -> Printf.sprintf "%f G" g

Now we can put them together into a single string by using functions from the Buffer module, putting a
space character after each.

string_of_ops : Pdfpage.t list → string

let string_of_ops ops =
let b = Buffer.create 1000 in
List.iter
(fun op ->

Buffer.add_string b (string_of_op op);
Buffer.add_char b ' ')

ops;
Buffer.contents b

Here is a very simple example – we move to (100, 100), make three lines and close the path. Then we use
the Fill operator. Coordinates in PDF have the origin at the bottom left of the page.

Chapter 15. Pretty Pictures 119

box : Pdfpage.t list

let box =
[Pdfpage.Move (100., 100.);
Pdfpage.Line (100., 200.);
Pdfpage.Line (200., 200.);
Pdfpage.Line (200., 100.);
Pdfpage.Close;
Pdfpage.Fill]

Our page looks like this:

Not all sequences of operators are valid, and our data type makes no checks to ensure our list is correct.
This could be solved by building a higher-level data type which would then be flattened down to a list of
Pdfpage.t elements. In our examples, and in the questions at the end of the chapter, it is sufficient to stick
to the pattern above – one Move, one or more Lines, a Close (if filling), and a Fill or Stroke.

As an example, we will build a function to make a single line, and use it to build a function which,
given the page dimensions, draws a page of graph paper. First, a function to build a single line from (x, y)
to (x1, y1):

mkline : float → float → float → float → Pdfpage.t list

let mkline x y x1 y1 =
[Pdfpage.Move (x, y);
Pdfpage.Line (x1, y1);
Pdfpage.Stroke]

Now, a function to return a set of equally spaced floating-point values from 0 . . . n given a step:

120 Chapter 15. Pretty Pictures

steps : float → float → float list

let steps n step =
let mul = ref 0
and vals = ref [] in
while float !mul *. step <= n do
vals := float !mul *. step :: !vals;
mul := !mul + 1

done;
List.rev !vals

Note that we have been careful to avoid repeated addition of floating-point values – this can accumulate
errors. We can build all the lines:

graph_string : float → float → float → string

let graph_string w h step =
let horizontals =

List.map (fun n -> mkline 0. n w n) (steps h step)
and verticals =
List.map (fun n -> mkline n 0. n h) (steps w step)

in
Pdfpage.string_of_ops (List.concat (horizontals @ verticals))

Here is the result of graph_string 595.28 841.89 10. on a page of A4 paper:

Chapter 15. Pretty Pictures 121

Questions

1. Write a function which, given a centre point and radius, returns a list of Move, Line, and Close
elements which represent a circle. Use a number of lines appropriate to the size of the circle.

2. Use the function from the previous question to write a program which outputs a page covered in
pseudo-random sized and filled grey circles.

3. The sequences red green blue rg and red green blue RG are the colour analogues to the se-
quences grey g and grey G. Add them to our data type, and redo the circles program to use
colour.

4. The sequence width w sets the line width. Add this to our data type and use it to draw a single
large unfilled circle over the centre of the page.

5. The operator W in place of a stroke or paint operator is used to set up a clipping path. Add this to our
data type. Turn your big circle into a clipping path for the random circles pattern, so you now have
circles within a circle.

Chapter 16

Adding Text

In this chapter, we will develop a very simple typesetter. Given a string representing the page content, it
will split it into words, break them across lines and place them on the page. In the questions at the end of
the chapter, the typesetter will be extended to use full justification, to indent paragraphs, and to produce
multi-page documents.

To begin with, some of our numbers (lines per page, margins etc.) will be hard coded – we will then
factor them out as we generalize the code. But let us define names for the page width and height for an A4
page first, to prevent excessive duplication:

page_width : float
page_height : float

let page_width = 595.28

let page_height = 841.89

We first need to split our text into words. For our purposes, a word is anything separated from another
word by one or more spaces. To preserve the paragraph breaks, the new line character \n will be considered
a word also. So, for example, the string "He stopped.\n Looking around, he saw he was enveloped
in smoke." would be split into the list of words ["He"; "stopped."; "\n"; "Looking"; "around,";
"he"; "saw"; "he"; "was"; "enveloped"; "in"; "smoke."].

The function consume_spaces, given an input, places the input position at the first non-space character
at or after its current position. If the end of the input is reached, no exception is raised.

123

124 Chapter 16. Adding Text

consume_spaces : Input.input → unit

let consume_spaces i =
try

while true do
match i.Input.input_char () with

' ' -> ()
| x -> rewind i; raise End_of_file

done;
assert false

with
End_of_file -> ()

Now we can write a function to read a word. First, we consume any spaces present. Then, we repeatedly
read characters into a buffer until either a space occurs, a newline occurs, or we reach the end of a file.
If a space occurs, we have finished reading the word. If a newline occurs, we have finished also, but we
rewind so the newline will be picked up as its own word next time. If we reach the end of the input, we
return the contents of the buffer so far.

read_word : Input.input → string

let read_word i =
consume_spaces i; discard any initial space
let b = Buffer.create 20 in

try
while true do
match i.Input.input_char () with

'\n' -> newline
if Buffer.length b = 0
then Buffer.add_char b '\n'
else rewind i;

raise End_of_file
| ' ' -> raise End_of_file space
| c -> Buffer.add_char b c any other character

done;
assert false

with
End_of_file ->
if Buffer.length b = 0 if we have read nothing. . .
then raise End_of_file . . . we have no word, but are at the end. . .
else Buffer.contents b . . . otherwise we have a final word

Now it is simple to collect all the words in an input by repeatedly calling read_word, and accumulating
the result is a list.

Chapter 16. Adding Text 125

words_of_input : Input.input → string list

let words_of_input i =
let words = ref [] in

try
while true do words := read_word i :: !words done;
assert false

with
End_of_file -> List.rev !words

We shall consider the opening paragraphs of Kafka’s “Metamorphosis”:

One morning, when Gregor Samsa woke from troubled dreams, he found
himself transformed in his bed into a horrible vermin. He lay on
his armour-like back, and if he lifted his head a little he could
see his brown belly, slightly domed and divided by arches into stiff
sections. The bedding was hardly able to cover it and seemed ready
to slide off any moment. His many legs, pitifully thin compared
with the size of the rest of him, waved about helplessly as he
looked.

"What's happened to me?" he thought. It wasn't a dream. His
room, a proper human room although a little too small, lay peacefully
between its four familiar walls. A collection of textile samples lay
spread out on the table - Samsa was a travelling salesman - and above
it there hung a picture that he had recently cut out of an
illustrated magazine and housed in a nice, gilded frame. It showed a
lady fitted out with a fur hat and fur boa who sat upright, raising a
heavy fur muff that covered the whole of her lower arm towards the
viewer.

So, for our text, we get:

["One"; "morning,"; "when"; "Gregor"; "Samsa"; "woke"; "from"; "troubled";
"dreams,"; "he"; "found"; "himself"; "transformed"; "in"; "his"; "bed";
"into"; "a"; "horrible"; "vermin."; "He"; "lay"; "on"; "his"; "armour-like";
"back,"; "and"; "if"; "he"; "lifted"; "his"; "head"; "a"; "little"; "he";
"could"; "see"; "his"; "brown"; "belly,"; "slightly"; "domed"; "and";
"divided"; "by"; "arches"; "into"; "stiff"; "sections."; "The"; "bedding";
"was"; "hardly"; "able"; "to"; "cover"; "it"; "and"; "seemed"; "ready";
"to"; "slide"; "off"; "any"; "moment."; "His"; "many"; "legs,"; "pitifully";
"thin"; "compared"; "with"; "the"; "size"; "of"; "the"; "rest"; "of";
"him,"; "waved"; "about"; "helplessly"; "as"; "he"; "looked."; "\n";
"\"What's"; "happened"; "to"; "me?\""; "he"; "thought."; "It"; ...]

Notice the newline as a word on its own. Our next task is to break this sequence of words into lines
of a given width. We will have two kinds of line. A Full line is one we had to break at the end of. A
Partial line is one which ended because of a newline or end-of-input. In our first example, we will not
need to distinguish these two, but when it comes to justification and more advanced examples, it will be
invaluable. The type is trivial:

126 Chapter 16. Adding Text

type line =
Full of string

| Partial of string

Now the line breaking function. The function lines takes a maximum width in characters, and a list of
words, and returns a line list. There are three cases in the lines_inner function:

1. If we have reached the end of the list of words, return the list of collected lines, adding one for
anything in the current line buffer, if it is non-empty.

2. If we have a newline word, create a Partial line from the current buffer (even if it is empty – this
allows blank lines to be inserted using multiple newlines), and carry on.

3. If we have any other word, see how long it and the buffer are. If the word is longer than the whole
line and we are at the beginning of that line, we output an over-sized line (an alternative would be
to wrap or hyphenate the word in some way). Otherwise, we see if the current word will fit. If it
will, we add it and a space to the buffer and carry on. It not, we output a Full line, and start with
the word on the next line.

lines_inner : line list → Buffer.t → int → string list → line list
lines : int → string list → line list

let rec lines_inner ls b width words =
match words with

[] -> case 1
if Buffer.length b > 0 then
List.rev (Partial (Buffer.contents b) :: ls)

else
List.rev ls

| "\n"::t -> case 2
lines_inner

(Partial (Buffer.contents b) :: ls)
(Buffer.create width) width t

| word::t -> case 3
if Buffer.length b = 0 && String.length word > width then

lines_inner (Full word :: ls) (Buffer.create width) width t
else if String.length word + Buffer.length b < width then
begin

Buffer.add_string b word;
Buffer.add_char b ' ';
lines_inner ls b width t

end
else

lines_inner
(Full (Buffer.contents b) :: ls)
(Buffer.create width) width (word :: t)

let lines width words =
lines_inner [] (Buffer.create width) width words

For example, here is our text split into lines of no more than twenty characters each:

Chapter 16. Adding Text 127

[Text.Full "One morning, when "; Text.Full "Samsa woke from ";
Text.Full "dreams, he found "; Text.Full "transformed in his ";
Text.Full "into a horrible "; Text.Full "He lay on his ";
Text.Full "back, and if he "; Text.Full "his head a little ";
Text.Full "could see his brown "; Text.Full "slightly domed and ";
Text.Full "by arches into "; Text.Full "sections. The ";
Text.Full "was hardly able to "; Text.Full "it and seemed ready ";
Text.Full "slide off any "; Text.Full "His many legs, ";
Text.Full "thin compared with "; Text.Full "size of the rest of ";
Text.Full "waved about "; Text.Partial "as he looked. ";
Text.Full "\"What's happened to "; Text.Full "he thought. It ";
Text.Full "a dream. His room, "; Text.Full "proper human room ";
Text.Full "a little too small, "; Text.Full "peacefully between "; ...]

Now we need to add appropriate text-showing operators to our Pdfpage module, and then produce a
list of operators for showing a line, using it repeatedly to show the whole page. A text section in a PDF
operator stream looks something like this:

BT 1 0 0 1 40 50 Tm /F0 12 Tf (The text) Tj ET

This contains the following operators and operands:

Operands Operator Description

- BT begin text section
1 0 0 1 40 50 Tm move text position to (40, 50)

/F0 12 Tf set font to 12pt /F0
(The Text) Tj show the text string “The Text”
- ET end text section

Here are the fragments added to the Pdfpage.t type. . .

| BeginText
| EndText
| SetTextPosition of float * float
| SetFontAndSize of string * float
| ShowText of string

. . . and the string_of_op function:

| BeginText -> "BT"
| EndText -> "ET"
| SetTextPosition (x, y) -> Printf.sprintf "1 0 0 1 %f %f Tm" x y
| SetFontAndSize (font, size) -> Printf.sprintf "%s %f Tf" font size
| ShowText t -> Printf.sprintf "(%s) Tj" t

Consider Figure 16.1. The function typeset_line_at builds a single line at x position 20 and a given y
coordinate. The function downfrom builds a list of y positions for a number of lines. The utility function
clean_lines makes plain strings from a list of lines, and the function typeset_page puts it all together,
generating a big list of Pdfpage.t operations. The resulting PDF is shown in Figure 16.2. The full code for
this chapter is included in the online resources – it should be consulted before attempting the questions.

128 Chapter 16. Adding Text

typeset_line_at : string → float → Pdfpage.t list
downfrom : float → float → int → int → float list
clean_lines : line list → string list
typeset_page : string → Pdfpage.t list

let typeset_line_at line y =
[Pdfpage.BeginText;
Pdfpage.SetTextPosition (20., y);
Pdfpage.SetFontAndSize ("/F0", 12.0);
Pdfpage.ShowText line;
Pdfpage.EndText]

let rec downfrom step start length n =
if length = 0 then [] else

start -. (step *. float n) ::
downfrom step start (length - 1) (n + 1)

let clean_lines =
List.map (fun Full x -> x | Partial x -> x)

let typeset_page text =
let words = words_of_input (Input.input_of_string text) in
let ls = clean_lines (lines 76 words) in

let positions =
downfrom 14. (page_height -. 30.) (List.length ls) 0

in
List.concat (List.map2 typeset_line_at ls positions)

Figure 16.1

Chapter 16. Adding Text 129

130 Chapter 16. Adding Text

One morning, when Gregor Samsa woke from troubled dreams, he found himself
in his bed into a horrible vermin. He lay on his armour-like back, and if
lifted his head a little he could see his brown belly, slightly domed and
by arches into stiff sections. The bedding was hardly able to cover it and
ready to slide off any moment. His many legs, pitifully thin compared with
size of the rest of him, waved about helplessly as he looked.
"What’s happened to me?" he thought. It wasn’t a dream. His room, a proper
room although a little too small, lay peacefully between its four familiar
A collection of textile samples lay spread out on the table - Samsa was a
salesman - and above it there hung a picture that he had recently cut out
an illustrated magazine and housed in a nice, gilded frame. It showed a
fitted out with a fur hat and fur boa who sat upright, raising a heavy fur
that covered the whole of her lower arm towards the viewer.
Gregor then turned to look out the window at the dull weather. Drops of
could be heard hitting the pane, which made him feel quite sad. "How about
I sleep a little bit longer and forget all this nonsense", he thought, but
was something he was unable to do because he was used to sleeping on his
and in his present state couldn’t get into that position. However hard he
himself onto his right, he always rolled back to where he was. He must have
it a hundred times, shut his eyes so that he wouldn’t have to look at the
legs, and only stopped when he began to feel a mild, dull pain there that
had never felt before.
"Oh, God", he thought, "what a strenuous career it is that I’ve chosen!
day in and day out. Doing business like this takes much more effort than
your own business at home, and on top of that there’s the curse of
worries about making train connections, bad and irregular food, contact
different people all the time so that you can never get to know anyone or
friendly with them. It can all go to Hell!" He felt a slight itch up on his
pushed himself slowly up on his back towards the headboard so that he could
his head better; found where the itch was, and saw that it was covered with
of little white spots which he didn’t know what to make of; and when he
to feel the place with one of his legs he drew it quickly back because as
as he touched it he was overcome by a cold shudder.
He slid back into his former position. "Getting up early all the time", he
"it makes you stupid. You’ve got to get enough sleep. Other travelling
live a life of luxury. For instance, whenever I go back to the guest house
the morning to copy out the contract, these gentlemen are always still
there eating their breakfasts. I ought to just try that with my boss; I’d
kicked out on the spot. But who knows, maybe that would be the best thing
me. If I didn’t have my parents to think about I’d have given in my notice
long time ago, I’d have gone up to the boss and told him just what I think,
him everything I would, let him know just what I feel. He’d fall right off
desk! And it’s a funny sort of business to be sitting up there at your
talking down at your subordinates from up there, especially when you have
go right up close because the boss is hard of hearing. Well, there’s still
hope; once I’ve got the money together to pay off my parents’ debt to him -
five or six years I suppose - that’s definitely what I’ll do. That’s when
make the big change. First of all though, I’ve got to get up, my train
at five."

Figure 16.2

Chapter 16. Adding Text 131

Questions

1. Factor out the font size, line height, margin height and automatically calculate the number of
characters in a line (the number of characters in a line can be calculated by the formula 5w/3f where
w is the width of a line and f is the font size). The program should now work for any page size.

2. The first line of each paragraph (save for the first) should be indented by eight characters. Implement
this.

3. Implement full justification. This gives a clean left and right margin except for the left margin of
the first line in a paragraph and the right margin of the last line of a paragraph. This can be done
by altering the spacing between characters and words. Of course, Partial lines should not be
stretched.

4. Allow the program to generate multiple pages, should the length of the text demand it. This can be
done by extending the /Kids entry in the PDF file, and producing multiple page objects.

Answers to Questions

Hints may be found on page 191.

Chapter 1 (Unravelling “Fold”)

1
This can be achieved by folding the subtraction operator over the deductions, with the starting accumulator
set to the budget:

deduct : int → int list → int

let deduct budget expenses =
List.fold_left (-) budget expenses

let deduct = List.fold_left (-)

Partial application can be used, as in the second definition.

2
We can use an accumulator starting at zero, and increment it once for each element processed:

length : α list → int

let length l =
List.fold_left (fun a _ -> a + 1) 0 l

Since we ignore the element itself, the function is polymorphic.

3
If the list is empty, we return None, otherwise we use a left fold which simply replaces the accumulator
with each successive element from the list. We must initialize the accumulator, so we pick the first element
for that (we have already eliminated the case where there are no elements, so List.hd will succeed).

133

134 Answers to Questions

last : α list → α option

let last l =
match l with
[] -> None

| _ -> Some (List.fold_left (fun _ e -> e) (List.hd l) l)

Not quite idiomatic.

4
If we start from the left, consing each element to the accumulator (which is initially the empty list), the list
will be reversed.

rev : α list → α list

let rev l =
List.fold_left (fun a e -> e :: a) [] l

Since the accumulator is the empty list (which has type α list), the function remains polymorphic, having
the type we would expect.

5
The accumulator begins set to false. For each element, we calculate the logical OR of the element tested
for equality and the accumulator. If at least one true occurs, the result will be true.

member : α → α list → bool

let member x l =
List.fold_left (fun a e -> e = x || a) false l

Note that this is less efficient than List.mem because there is no early exit – the whole list is processed in
every case.

6
This is a classic problem. We either need to

• add a space after each word except for the last; or

• add a space before each word except for the first.

With fold_left we can detect when we are at the first word, by inspecting the accumulator, and use the
second method.

Answers to Questions 135

sentence : string list → string

let sentence words =
List.fold_left

(fun a e -> if a = "" then e else a ^ " " ^ e)
""
words

Note that the requirement that the words be non-empty is important here. The efficiency is poor, however,
since each string concatenation builds a new string. The Standard Library Buffer module is a better
approach here.

7
We can use the built-in max function to update the accumulator.

max_depth : α tree → int

let max_depth l =
List.fold_tree (fun _ l r -> 1 + max l r) 0 l

The current element is ignored.

8
We can compare the speed of List.mem and member with the help of the Unix.gettimeofday function, as
shown in Figure A.1. On the Author’s machine, this results in:

Our member took 2.513232 seconds
List.mem took 1.162159 seconds

There is a significant speed penalty in our version of the member function, at least for this scenario.

Chapter 2 (Being Lazy)

1
This is similar to the lseq function in the text, but we double every time instead of adding one.

ldouble : int → int lazylist
thedoubles : int lazylist

let rec ldouble n =
Cons (n, fun () -> ldouble (n * 2))

let thedoubles = ldouble 1

136 Answers to Questions

l : int list
t : float
t' : float
t'' : float

let l = [1; 2; 3; 2; 1; 2; 2; 56; 32; 2; 34; 4; 2]

let t = Unix.gettimeofday ()

let _ =
for x = 1 to 10_000_000 do ignore (member 56 l) done

let t' = Unix.gettimeofday ()

let _ =
for x = 1 to 10_000_000 do ignore (List.mem 56 l) done

let t'' = Unix.gettimeofday ()

let _ =
Printf.printf "Our member took %f seconds\n" (t' -. t);
Printf.printf "List.mem took %f seconds\n" (t'' -. t')

Figure A.1

Having written the function which, given a number, doubles from that point, we then just code the list
itself by starting at 1.

2
If we are asked to fetch the 0th element, we already have it – as the head of the lazy list. If not, we force
evaluation of the tail, and recurse.

lnth : α lazylist → int → α

let rec lnth (Cons (h, tf)) n =
match n with
0 -> h

| _ -> lnth (tf ()) (n - 1)

Of course, this does not terminate on bad inputs (when n < 0). Error detection should be added.

3
Below, the function lrepeating_inner takes the current list c and the original list l. Matching on c, we
build the lazy list. If we reach the last element of the input list, we start again, with the original list, which
is always retained.

Answers to Questions 137

lrepeating_inner : α list → α list → α lazylist
lrepeating : α tree → α lazylist

let rec lrepeating_inner c l =
match c with

[] -> raise (Invalid_argument "lrepeating: empty list")
| [x] -> Cons (x, fun () -> lrepeating_inner l l)
| h::t -> Cons (h, fun () -> lrepeating_inner t l)

let lrepeating l = lrepeating_inner l l

Note that we cannot build from an empty list, since there could be no head.

4
The first two fibonacci numbers are defined to be 0 and 1. Thereafter, we keep the current and previous
number, and generate the lazy list.

fibonacci_inner : int → int → int lazylist
fibonacci : int lazylist

let rec fibonacci_inner x y =
Cons (x, fun () -> fibonacci_inner y (x + y))

let fibonacci = fibonacci_inner 0 1

5
This is slightly delicate. We must force the tail twice, to reveal new elements for the heads of the two
output lists, and the final tail for the next time each list is forced.

unleave : α lazylist → α lazylist × α lazylist

let rec unleave (Cons (h, tf)) =
let Cons (h', tf') = tf () in

let t = tf' () in
(Cons (h, fun () -> fst (unleave t)),
Cons (h', fun () -> snd (unleave t)))

Note that we cannot hoist the calculation of unleave t into a let so as to do it once, since to do so would
not delay evaluation.

138 Answers to Questions

6
If we write a function which, given a number, gives the correct string, then the lazy list itself is easy to
build with lmap and lseq.

letter_string : int → string
alphas : string lazylist

let rec letter_string n =
if n <= 26 then
let s = String.create 1 in s.[0] <- char_of_int (n + 64); s

else
letter_string ((n - 1) / 26) ^
letter_string (((n - 1) mod 26) + 1)

let alphas =
lmap letter_string (lseq 1)

Chapter 3 (Named Tuples with Records)

1
Since a reference is just a record with a mutable field contents, we can use the <- construct:

OCaml

let x = ref 0;;
val x : int ref = {contents = 0}
x.contents <- 1;;
- : unit = ()
x;;
- : int ref = {contents = 1}

There is no reason to use this rather than := of course.

2
The function Unix.time returns the current time. The function Unix.localtime builds from this a record
of type Unix.tm. First we will need two ancillary functions:

Answers to Questions 139

string_of_month : int → string
string_of_day : int → string

let string_of_month m =
match m with

0 -> "January"
| 1 -> "February"
| 2 -> "March"
| 3 -> "April"
| 4 -> "May"
| 5 -> "June"
| 6 -> "July"
| 7 -> "August"
| 8 -> "September"
| 9 -> "October"
| 10 -> "November"
| 11 -> "December"
| _ -> raise (Invalid_argument "string_of_month")

let string_of_day d =
match d with

0 -> "Sunday"
| 1 -> "Monday"
| 2 -> "Tuesday"
| 3 -> "Wednesday"
| 4 -> "Thursday"
| 5 -> "Friday"
| 6 -> "Saturday"
| _ -> raise (Invalid_argument "string_of_day")

Now the main function, which both uses the shortened form of a record pattern, and names only the fields
we need:

140 Answers to Questions

print_time : unit → unit

let string_of_time () =
let

{Unix.tm_min;
Unix.tm_hour;
Unix.tm_mday;
Unix.tm_mon;
Unix.tm_year;
Unix.tm_wday}

=
Unix.localtime (Unix.time ())

in
"It is "
^ string_of_int tm_hour
^ ":"
^ string_of_int tm_min
^ " on "
^ string_of_day tm_wday
^ " "
^ string_of_int tm_mday
^ " "
^ string_of_month tm_mon
^ " "
^ string_of_int (tm_year + 1900)

Note that the names bound by the pattern do not include the Unix prefix.

3
The construct type t = {x : int ref} is a record type containing a reference to an integer. We can build
it using an existing reference, and can extract the reference for use elsewhere. We can share a single
reference between two or more instances of this data type. The construct type t = {mutable x : int} is
a record with a single, mutable field. We must use <- rather than := to mutate it, and it may not be shared.

4
We can use multiple type parameters (which are written with parentheses and commas) and then use
these types for the fields in the appropriate way:

type ('a, 'b, 'c) t =
{a : 'a;
b : 'a;
c : 'b;
d : 'b;
e : 'c;
f : 'c}

Answers to Questions 141

5
For the first part, we can use the function Gc.stat to return a Gc.stat record. Then we can write various
components to the given file (here, we have chosen just a few):

write_gc_summary : string → unit

let write_gc_summary filename =
let ch = open_out filename in

let
{Gc.minor_words;
Gc.promoted_words;
Gc.major_words;
Gc.minor_collections;
Gc.major_collections}

=
Gc.stat ()

in
output_string ch "Minor Words: ";
output_string ch (string_of_float minor_words);
output_string ch "\nPromoted Words: ";
output_string ch (string_of_float promoted_words);
output_string ch "\nMajor Words: ";
output_string ch (string_of_float major_words);
output_string ch "\nMinor Collections: ";
output_string ch (string_of_int minor_collections);
output_string ch "\nMajor Collections: ";
output_string ch (string_of_int major_collections);
close_out ch

For the second part, we define names for the magic numbers given in the documentation. We can then
write a function change_verbosity which adds them up to make the new flags field, and uses Gc.get
together with the with syntax to build a new record to be passed to Gc.set:

142 Answers to Questions

start_of_major : int
minor_collection : int
heap_grow_shrink : int
stack_resizing : int
heap_compaction : int
change_parameters : int
compute_slice_size : int
call_finalisation : int
bytecode_exe_search : int
change_verbosity : int list → unit

let start_of_major = 0x001
let minor_collection = 0x002
let heap_grow_shrink = 0x004
let stack_resizing = 0x008
let heap_compaction = 0x010
let change_parameters = 0x020
let compute_slice_size = 0x040
let call_finalisation = 0x080
let bytecode_exe_search = 0x100

let change_verbosity vs =
let n = List.fold_left (+) 0 vs in

Gc.set {(Gc.get ()) with Gc.verbose = n}

Chapter 4 (Generalized Input/Output)

1
This is a simple modification of input_of_string from the text, replacing string operators with array
ones.

input_of_array : char array → input

let input_of_array a =
let pos = ref 0 in
{pos_in = (fun () -> !pos);
seek_in =
(fun p ->

if p < 0 then raise (Invalid_argument "seek < 0");
pos := p);

input_char =
(fun () ->

if !pos > Array.length a - 1
then raise End_of_file
else (let c = a.(!pos) in pos := !pos + 1; c));

in_channel_length = Array.length a}

Answers to Questions 143

Note that an array of characters like this requires much more space as a string.

2
We create a Buffer.t, attempt to read the specified number of characters, and then return the contents.
If one of the calls to i.input_char () raises the End_of_file exception, we return the buffer contents
anyway – it will contain the characters read so far.

input_string : input → int → string

let input_string i n =
let b = Buffer.create 100 in

try
for x = 0 to n - 1 do

Buffer.add_char b (i.input_char ())
done;
Buffer.contents b

with
End_of_file -> Buffer.contents b

3
We add a function of the expected type to the input. The option None will represent the end of the file.

type input =
{pos_in : unit -> int;
seek_in : int -> unit;
input_char : unit -> char;
input_char_opt : unit -> char option;
in_channel_length : int}

Now for a new input_of_channel. We try to build the Some option, returning None if the End_of_file
exception is raised.

input_of_channel : in_channel → input

let input_of_channel ch =
{pos_in = (fun () -> pos_in ch);
seek_in = seek_in ch;
input_char = (fun () -> input_char ch);
input_char_opt =

(fun () ->
try Some (input_char ch) with End_of_file -> None);

in_channel_length = in_channel_length ch}

144 Answers to Questions

The input_of_string function is another similar modification. This time, there is no need for exception
handling.

input_of_string : string → input

let input_of_string s =
let pos = ref 0 in
{pos_in = (fun () -> !pos);
seek_in =
(fun p ->

if p < 0 then raise (Invalid_argument "seek < 0");
pos := p);

input_char =
(fun () ->

if !pos > String.length s - 1
then raise End_of_file
else (let c = s.[!pos] in pos := !pos + 1; c));

input_char_opt =
(fun () ->

if !pos > String.length s - 1
then None
else (let c = s.[!pos] in pos := !pos + 1; Some c));

in_channel_length = String.length s}

4
We add the function of type unit → int.

type input =
{pos_in : unit -> int;
seek_in : int -> unit;
input_char : unit -> char;
input_byte : unit -> int;
in_channel_length : int}

Now, having defined as a convenience, the name no_more for the −1, we can modify input_of_channel
and input_of_string easily:

Answers to Questions 145

no_more : int
input_of_channel : in_channel → input
input_of_string : string → input

let no_more = (-1)

let input_of_channel ch =
{pos_in = (fun () -> pos_in ch);
seek_in = seek_in ch;
input_char = (fun () -> input_char ch);
input_byte =

(fun () ->
try int_of_char (input_char ch) with End_of_file -> no_more);

in_channel_length = in_channel_length ch}

let input_of_string s =
let pos = ref 0 in
{pos_in = (fun () -> !pos);
seek_in =

(fun p ->
if p < 0 then raise (Invalid_argument "seek < 0");
pos := p);

input_char =
(fun () ->

if !pos > String.length s - 1
then raise End_of_file
else (let c = s.[!pos] in pos := !pos + 1; c));

input_byte =
(fun () ->

if !pos > String.length s - 1
then no_more
else

(let c = s.[!pos] in pos := !pos + 1; int_of_char c));
in_channel_length = String.length s}

These functions have none of the advantages of the exception-raising or option-returning ones, but they
are very fast indeed.

5
We alter input_of_channel to check for a newline and raise End_of_file in that case.

146 Answers to Questions

single_line_input_of_channel : in_channel → input

let single_line_input_of_channel ch =
{pos_in = (fun () -> pos_in ch);
seek_in = seek_in ch;
input_char =

(fun () ->
match input_char ch with '\n' -> raise End_of_file | c -> c);

in_channel_length = in_channel_length ch}

Now we can create one of these special inputs from standard input, and use our input_string function
to build a string from the user’s input, ending when the return key is pressed. For example:

input_string (single_line_input_of_channel stdin) max_int;;
Some input
- : string = "Some input"

6
Ideal functions to use when defining the new type already exist in the Buffer module. Then, we can build
an example, where we give a name to the buffer, build an input from it and process it, retrieving its contents
afterwards.

output_of_buffer : Buffer.t → output
build_buffer : unit → string

let output_of_buffer b =
{output_char = Buffer.add_char b;
out_channel_length = fun () -> Buffer.length b}

let build_buffer () =
let b = Buffer.create 20 in
let o = output_of_buffer b in

o.output_char 'A';
o.output_char 'B';
o.output_char 'C';
Buffer.contents b

Chapter 5 (Streams of Bits)

1
We can read quickly if the number of bits wanted is 8 and we happen to be at the beginning of a byte. In
this case we can call the underlying output’s input_char function directly.

Answers to Questions 147

getval_fast : input_bits → int → int

let getval_fast b n =
if n = 8 && b.bit = 0

then b.input.input_char ()
else getval b n

If the conditions are not met, we fall back to the old getval function. This will be faster if we frequently
read data aligned-byte-by-aligned-byte, but we still need the flexibility of a stream of bits when required.

2
We simply replace the int operators with those for Int32.t:

getval_32 : input_bits → int → Int32.t

let getval_32 b n =
if n < 0 then raise (Invalid_argument "getval_32") else

if n = 0 then 0l else
let r = ref Int32.zero in
for x = n - 1 downto 0 do

let num = Int32.of_int (if getbit b then 1 else 0) in
r := Int32.logor !r (Int32.shift_left num x)

done;
!r

3
Our precondition this time is that the number of bits to be written is 8 and the obit field is set to its initial
value, 7. Then we can use the output_char function of the underlying output.

putval_fast : output_bits → int → int → unit

let putval_fast o v l =
if l = 8 && o.obit = 7

then o.output.output_char v
else putval o v l

Otherwise, we fall back to the old putval function.

148 Answers to Questions

4
The integer functions are replaced by ones from the Int32 module:

putval_32 : output_bits → Int32.t → int → unit

let putval_32 o v l =
for x = l - 1 downto 0 do

putbit o
(Int32.to_int

(Int32.logand v (Int32.shift_left (Int32.of_int x) 1)))
done

5
We add a field rewind which will move the position in the output backwards one byte, if possible. This is
the new type:

type output =
{output_char : char -> unit;
rewind : unit -> unit;
out_channel_length : unit -> int}

Now we can rewrite, for example, output_of_string for this new type:

output_of_string : string → output

let output_of_string s =
let pos = ref 0 in

{output_char =
(fun c ->

if !pos < String.length s
then (s.[!pos] <- c; pos := !pos + 1)
else raise End_of_file);

rewind =
(fun () ->

if !pos > 0
then pos := !pos - 1
else raise (Failure "rewind"));

out_channel_length =
(fun () -> String.length s)}

We alter putbit appropriately:

Answers to Questions 149

putbit : output_bits → int → unit

let rec putbit o b =
if o.obit = (-1) then

begin
o.obyte <- 0;
o.obit <- 7;
putbit o b

end
else

begin
if b <> 0 then o.obyte <- o.obyte lor (1 lsl o.obit);
o.output.output_char (char_of_int o.obyte);
o.output.rewind ();
o.obit <- o.obit - 1

end

Chapter 6 (Compressing Data)

1
We will need to look through the input list of integers (bytes), finding same and different runs and building
a new list. For clarity, we will produce the output runs using a new type, producing the actual bytes later:

type run = Same of int * int | Diff of int list

The Same case holds a (length, value) pair and Diff just a list of bytes. Now we can write a function
get_same which, given the first value, the current count, and the list, returns a pair of the final count of
like characters, and the remaining list:

get_same : α → int → α list → int × α list

let rec get_same x n l =
match l with

h::t when h = x -> get_same x (n + 1) t
| _ -> (n, l)

Similarly, we can define a function to read a different run into an accumulator, returning the run and the
remaining list. This function will be called only when get_same returned a run of length one.

150 Answers to Questions

get_different : α → α list → α list × α list

let rec get_different a l =
match l with
[] -> (List.rev a, [])

| h::t ->
if a = [] then get_different [h] t
else if h <> List.hd a then get_different (h :: a) t
else (List.rev (List.tl a), List.hd a :: l)

Now we can write a function which uses both of these functions to get a single run, creating an instance of
our new data type:

getrun : int list → run × int list

let getrun l =
match l with
[] -> raise (Invalid_argument "getrun")

| h::_ ->
match get_same h 0 l with

1, _ ->
let diff, rest = get_different [] l in (Diff diff, rest)

| n, rest -> (Same (n, h), rest)

Now, we use the defined rules to build a function which makes a list of bytes from a run:

chars_of_run : run → int list

let chars_of_run r =
match r with
Same (length, c) -> [257 - length; c]

| Diff chars -> List.length chars - 1 :: chars

With all this done, it is easy to define the compression function itself, which accumulates runs, concate-
nating them when all the data has been processed. We must be sure to add the EOD marker at the
end.

Answers to Questions 151

compress_inner : run list → int list → int list
compress : int list → int list

let rec compress_inner a l =
match l with

[] -> List.concat (List.map chars_of_run (List.rev a))
| _ ->

let run, rest = getrun l in
compress_inner (run :: a) rest

let compress l = compress_inner [] l @ [128]

Decompression is rather simpler, making use of our take and drop functions from the Util module
described on page xiii. We read each run and expand it to a list of bytes, accumulating them until end of
data.

decompress_inner : int list list → int list → int list
decompress : int list → int list

let rec decompress_inner a l =
match l with

[128] -> List.concat (List.rev a)
| [] | [_] -> raise (Invalid_argument "decompress_inner")
| h::t::t' ->

if h < 127 then
let bytes = Util.take (t :: t') (h + 1) in
let rest = Util.drop (t :: t') (h + 1) in

decompress_inner (bytes :: a) rest
else if h > 128 then
decompress_inner

(Array.to_list (Array.make (257 - h) t) :: a) t'
else decompress_inner a []

let decompress l = decompress_inner [] l

Note a little cheat – we use functions from the Array module to expand the Same run.

2
The tree carries no information in its branches (since no code can be a prefix of another code). Leaves can
carry or not carry information, depending on whether there is a code there. In order to avoid option types,
we can just split into three cases, Lf for empty leaves, Code for full ones, and Br for a branch, where 0 goes
left and 1 goes right.

type tree = Lf | Code of int | Br of tree * tree

Now, we can define the function to add a code to an existing tree. For example, add_elt Lf ([0; 1],

152 Answers to Questions

67) adds the code [0; 1] for the run length 67. This will build the tree Br (Br (Lf, Code 67), Lf). We
match on the code, building the tree as we go left or right.

add_elt : tree → int list × int → tree

let rec add_elt tr (l, n) =
match l with
0::m ->
begin match tr with

Lf -> Br (add_elt Lf (m, n), Lf)
| Br (left, right) -> Br (add_elt left (m, n), right)
| Code x -> raise (Failure "collision")
end

| 1::m ->
begin match tr with
Lf -> Br (Lf, add_elt Lf (m, n))

| Br (left, right) -> Br (left, add_elt right (m, n))
| Code x -> raise (Failure "collision")
end

| [] -> Code n
| _ -> raise (Failure "bad code")

Now, to build the whole tree, we just use repeated insertion with fold_left, having built the (code, run
length) pairs:

make_tree : int list array → int list → tree

let make_tree arr numbers =
List.fold_left
add_elt
Lf
(List.combine (Array.to_list arr) numbers)

Now, for example, we can build the white terminating codes as a tree:

white_terminating_tree : tree

let white_terminating_tree =
make_tree

white_terminating_codes
(Util.from 0 (Array.length white_terminating_codes - 1))

(Util.from a b gives the list of numbers starting at a and ending at b in ascending order). The function
succeeds, verifying that there are no collisions, and yields:

Answers to Questions 153

Br
(Br

(Br
(Br

(Br
(Br (Br (Lf, Br (Code 29, Code 30)),

Br (Br (Code 45, Code 46), Code 22)),
Br (Br (Code 23, Br (Code 47, Code 48)), Code 13)),

Br
(Br (Br (Code 20, Br (Code 33, Code 34)),

Br (Br (Code 35, Code 36), Br (Code 37, Code 38))),
Br (Br (Code 19, Br (Code 31, Code 32)), Code 1))),

Br
(Br (Br (Code 12, Br (Br (Code 53, Code 54), Code 26)),
Br (Br (Br (Code 39, Code 40), Br (Code 41, Code 42)),
Br (Br (Code 43, Code 44), Code 21))),

Br
(Br (Br (Code 28, Br (Code 61, Code 62)),

Br (Br (Code 63, Code 0), Lf)),
Code 10))),

Br
(Br
(Br (Code 11,

Br (Br (Code 27, Br (Code 59, Code 60)), Br (Lf, Code 18))),
Br
(Br (Br (Code 24, Br (Code 49, Code 50)),

Br (Br (Code 51, Code 52), Code 25)),
Br (Br (Br (Code 55, Code 56), Br (Code 57, Code 58)), Lf))),

Br (Lf, Code 2))),
Br
(Br (Br (Code 3, Br (Lf, Code 8)),

Br (Br (Code 9, Br (Code 16, Code 17)), Code 4)),
Br (Br (Code 5, Br (Br (Code 14, Code 15), Lf)), Br (Code 6, Code 7))))

3
Compressing our data with compress_string input_data 1680 1 instead of compress_string input_-
data 80 21 generates a string of length 110 bytes rather than 120 bytes. This is because we could generate
one run for the white section at the end of one line followed by a white section at the beginning of the
next, instead of splitting at line boundaries.

If we try to re-compress this data, with compress_string compressed 880 1, the data size increases
to 197 bytes. This is unsurprising, since the job of the white and black codes is to be information-dense
and the compression algorithm works best on data which is information-sparse.

4
We can re-use the read_up_to function to build our histogram. Given white and black arrays, each
of length 1792 and with elements initialized to zero, the input bits and the width and height, we can
repeatedly call read_up_to. We must maintain a count of how many pixels are left to be read, and an

154 Answers to Questions

additional count of how many are left in this line, so the correct width can be passed to the read_up_to
function.

build_histogram : int array → int array → input_bits → int → int → unit

let build_histogram a_white a_black i w h =
let toread = ref (w * h) in
let wleft = ref w in

while !toread > 0 do
let n, v = read_up_to (peekbit i) i 0 !wleft in

let a = if v then a_black else a_white in
a.(n) <- a.(n) + 1;
toread := !toread - n;
wleft := !wleft - n;
if !wleft = 0 then wleft := w

done

Now it is easy to build two histograms – one for white and one for black, and return them:

histogram_of_input : input → int → int → (int array × int array)

let histogram_of_input i w h =
let white = Array.make 1792 0 in

let black = Array.make 1792 0 in
build_histogram white black (input_bits_of_input i) w h;
(white, black)

We can define a simple function to print the histogram, eliding any zero counts:

print_histogram : int array → unit

let print_histogram =
Array.iteri

(fun x n ->
if n > 0 then Printf.printf "%i runs of length %i\n" n x)

Here is the histogram for white runs on our example data:

print_histogram white;;
5 runs of length 1
7 runs of length 2
15 runs of length 3
15 runs of length 4
34 runs of length 5
20 runs of length 6
4 runs of length 7

Answers to Questions 155

4 runs of length 8
4 runs of length 9
3 runs of length 10
3 runs of length 11
7 runs of length 12
1 runs of length 13
1 runs of length 14
1 runs of length 15
3 runs of length 16
1 runs of length 17
1 runs of length 20
1 runs of length 21
3 runs of length 35
1 runs of length 39
1 runs of length 46
1 runs of length 47
1 runs of length 73
3 runs of length 80
- : unit = ()

And here is the histogram for black runs:

print_histogram black;;
12 runs of length 1
55 runs of length 2
38 runs of length 3
5 runs of length 4
2 runs of length 5
1 runs of length 6
1 runs of length 7
1 runs of length 8
2 runs of length 9
2 runs of length 10
- : unit = ()

Chapter 7 (Labelled and Optional Arguments)

1
If α is int then the first and second argument can be confused. We can fix this by adding labels and calling
Array.make. Notice the use of punning here.

map : len:int → elt:α → α array

let make ~len ~elt =
Array.make len elt

Now the function can be called without confusion:

156 Answers to Questions

OCaml

make ~len:5 ~elt:4;;
- : int array = [|4; 4; 4; 4; 4|]

Of course, it can still be called without labels.

2
We can define separate types for the start and length so that their names must be mentioned when calling
the function.

fill : α array → start → length → α → unit
filled : unit → string array

type start = Start of int

type length = Length of int

let fill a (Start s) (Length l) v =
for x = s to s + l - 1 do a.(x) <- v done

let filled () =
let a = Array.make 100 "x" in

fill a (Start 20) (Length 40) "y";
a

Not nearly as convenient as labels, though.

3
There are three functions where confusion may arise, and we can label them with simple wrappers. They
are the functions where multiple arguments have the same type, and so may be confused.

sub : Buffer.t → off:int → len:int → string
blit : Buffer.t → srcoff:int → string → dstoff:int → len:int → unit
add_substring : Buffer.t → string → ofs:int → len:int → unit

let sub b ~off ~len =
Buffer.sub b off len

let blit src ~srcoff dst ~dstoff ~len =
Buffer.blit src srcoff dst dstoff len

let add_substring b s ~ofs ~len =
Buffer.add_substring b s ofs len

Answers to Questions 157

4
We can make the accumulator an optional argument. Now the caller can call the function as if it were the
same as List.map.

map : ?a:α list → (β → α) → β list → α list

let rec map ?(a = []) f l =
match l with

[] -> List.rev a
| h::t -> map ~a:(f h :: a) f t

The optional argument must still appear in the interface, of course, so we might still prefer the old approach
of wrapping it up and only exposing the wrapper.

Chapter 8 (Formatted Printing)

1
We can use Printf.bprintf to accumulate the individual parts, making sure to deal with the final element
specially. The outer function sets everything up.

cycle_of_points_inner : Buffer.t → (int × int) list → string
cycle_of_points : (int × int) list → string

let rec cycle_of_points_inner b l =
match l with

[] ->
Buffer.contents b

| [(x, y)] ->
Printf.bprintf b "(%i, %i)" x y;
Buffer.contents b

| (x, y)::t ->
Printf.bprintf b "(%i, %i) --> " x y;
cycle_of_points_inner b t

let cycle_of_points l =
match l with

[] -> ""
| h::t ->

cycle_of_points_inner (Buffer.create 256) (h :: t @ [h])

158 Answers to Questions

2
Again, Printf.bprintf is the key. This time, we can calculate the initial buffer size exactly.

hex_of_string : string → string

let hex_of_string s =
let b = Buffer.create (String.length s * 2) in

String.iter
(fun c -> Printf.bprintf b "%02X" (int_of_char c))
s;

Buffer.contents b

We have used a width specifier of 2 and the 0 flag to make sure that characters with code 0..15 are padded
with a zero.

3
The format string for Printf.printf must be known at compile time. The solution for printing the result
of mkstring using printf is the %s format specification:

Printf.printf "%s" (mkstring ())

4
The * character can be used as a width or precision specifier, to indicate that the width or precision is
given as an argument. We use * for the width, and pass in 10.

Printf.sprintf "(%*i)" 10 1

So, the result is:

(1)

We can use List.iter to print a table by applying this to each of a list of numbers in turn.

print_integers : int → int list → unit

let print_integers w ns =
List.iter (Printf.printf "(%*i)" w) ns

Answers to Questions 159

Chapter 9 (Searching for Things)

1
For the first part, where all matches are considered, we can rewrite search with an extra argument to
count the matches, restructuring its logic so as not to finish upon the first match.

string' : int → int → string → string → int
string : string → string → int

let rec search' matches n ss s =
if String.length ss > String.length s - n then matches else
if at ss 0 s n (String.length ss)

then search' (matches + 1) (n + 1) ss s
else search' matches (n + 1) ss s

let search = search' 0 0

There is no need to rewrite the at function. Now, for the version which considers only non-overlapping
matches, we just jump by the length of the pattern ss upon a match:

string' : int → int → string → string → int
string : string → string → int

let rec search' matches n ss s =
if String.length ss > String.length s - n then matches else
if at ss 0 s n (String.length ss)

then search' (matches + 1) (n + String.length ss) ss s
else search' matches (n + 1) ss s

let search = search' 0 0

2
It is simple to write a function which returns the length of the longest matching prefix at the beginning of
a list:

prefix : α list → α list → int

let rec prefix p l =
match p, l with

ph::pt, lh::lt -> if ph = lh then 1 + prefix pt lt else 0
| _ -> 0

160 Answers to Questions

Now, we can write a function which keeps track of the position and length of the longest prefix found,
returning them when the whole list has been searched.

longest_prefix_inner : int → int → int → α list → α list → int × int
longest_prefix : α list → α list → int × int

let rec longest_prefix_inner currpos bestpos bestlen p l =
match l with
[] -> (bestpos, bestlen)

| h::t ->
let prelen = prefix p l in

if prelen > bestlen then
longest_prefix_inner (currpos + 1) currpos prelen p t

else
longest_prefix_inner (currpos + 1) bestpos bestlen p t

let longest_prefix p l =
longest_prefix_inner 0 0 0 p l

Here, currpos is the current position, bestpos the position of the longest matching prefix found so far,
and bestlen the length of the longest prefix so far.

3
We can write a simple profiling function which, given a search function, measures its running time. This
allows us to compare the naive and better versions of search we wrote for searching in strings:

profile : (string → string → α) → float

let profile f =
let t = Unix.gettimeofday () in

for x = 1 to 1_000_000 do
ignore (f "ABA" "Somewhere in here is the pattern ABBBBAABA.")

done;
Unix.gettimeofday () -. t

Compiling with ocamlc on the Author’s machine:

Naive version took 7.608291 seconds
Better version tool 3.388830 seconds

Now, compiling with ocamlopt:

Answers to Questions 161

Naive version took 2.966211 seconds
Better version tool 0.450546 seconds

4
We can add a case to the main search. We must check the character following the backslash for a match,
assuming there is such a next character. If so, we move two positions in the pattern and one in the string.
Otherwise, the match has failed.

| '\\'->
if
sp < String.length s &&
ssp < String.length ss - 1 &&
ss.[ssp + 1] = s.[sp]

then
Some (2, 1)

else
None

5
The Standard Library function String.uppercase can be used, in conjunction with the optional boolean
argument:

search : ?nocase:bool → string → string → bool

let search ?(nocase = false) ss s =
if nocase then

search' 0 (String.uppercase ss) (String.uppercase s)
else

search' 0 ss s

Both the pattern and string must be upper case, of course.

Chapter 10 (Finding Permutations)

1
The combinations of a list can be generated by calculating the combinations of the tail. Then consider two
possibilities – the head is included in this combination, or it is not:

162 Answers to Questions

combinations : α list → α list list

let rec combinations l =
match l with
[] -> [[]]

| h::t ->
let cs = combinations t in
List.map (fun x -> h :: x) cs @ cs

Note the base case is the list containing the empty list, not just the empty list.

2
We build this from perms and the combinations function we just wrote:

permicombinations : α list → α list list

let permicombinations l =
List.concat (List.map perms (combinations l))

We used the tail-recursive version of perms, of course.

3
This has roughly the same shape as combinations, with two differences: we keep a counter to make sure
the computation ends, and we always add something to the list – either true or false.

bool_lists : int → bool list list

let rec bool_lists n =
match n with
0 -> [[]]

| _ ->
let ls = bool_lists (n - 1) in

(List.map (fun l -> true :: l) ls) @
(List.map (fun l -> false :: l) ls)

4
We repeatedly swap elements from opposite ends of the sub-array, given an array, offset and length:

Answers to Questions 163

array_rev : α array → int → int → unit

let array_rev a o l =
for x = 0 to l / 2 - 1 do

swap a (o + x) (o + l - x - 1)
done

It is important to make sure it works for the empty range, an even-length sub-array and an odd-length
sub-array. You could add detection of invalid arguments to this function.

5
The two functions first and last turn out to be even more awkward than their imperative counterparts.
The function first, given a list, returns a tuple of three things: the elements before the “first” item, the
first item itself, and those afterward. This is done by reversing the input list and looking for the first
appropriate item, since this is easier than looking for the last appropriate item in the original input:

first_inner : α list → α list → (α list × α × α list)
first : α list → (α list × α × α list)

let rec first_inner before l =
match l with

[] -> raise (Invalid_argument "first_inner")
| [x] -> (List.rev before, x, [])
| a::b::t ->

if b < a
then (List.rev t, b, (a :: before))
else first_inner (a :: before) (b :: t)

let first l =
first_inner [] (List.rev l)

The last function is still more verbose: we locate the correct item by sorting and finding the smallest item
greater than f. Then we can call split_at to return the item before and after the instance of f.

164 Answers to Questions

split_at_inner : α list → α → α list → α list × α list
split_at : α → α list → α list × α list
last : α → α list → α list × α × α list

let rec split_at_inner before n l =
match l with
[] -> (List.rev before, [])

| h::t ->
if h = n
then (List.rev before, t)
else split_at_inner (h :: before) n t

let split_at n l =
split_at_inner [] n l

let last f l =
match List.filter (fun x -> x > f) (List.sort compare l) with

[] -> raise (Invalid_argument "last")
| h::t ->

let before, after = split_at h l in
(before, h, after)

Now, the next_permutation function calls first and last, and stitches everything together:

next_permutation : α list → α list

let next_permutation l =
let before_f, f, after_f = first l in

let before_c, c, after_c = last f after_f in
before_f @ [c] @ List.rev (before_c @ [f] @ after_c)

Here is the equivalent non_increasing function, which is simple:

non_increasing : α list → bool

let rec non_increasing l =
match l with
[] | [_] -> true

| a::b::t -> a >= b && non_increasing (b :: t)

The final all_permutations function is now easy.

Answers to Questions 165

all_permutations_inner : α list list → α list → α list list
all_permutations : α list → α list list

let rec all_permutations_inner a l =
if non_increasing l then List.rev a else
let next = next_permutation l in

all_permutations_inner (next :: a) next

let all_permutations l =
l :: all_permutations_inner [] l

Conclusion: converting an imperative algorithm mechanically to a functional style is not always useful.

Chapter 11 (Making Sets)

1
It is not possible to measure directly the memory used by an OCaml data structure (though one could
calculate it by reading the section in the OCaml manual about data representation), but we can use the
Gc module to measure the number of words allocated whilst building the structure, by using the data in
Gc.counters before and after building each structure, and the given formula “memory used since start of
program = minor words + major words - promoted words”:

Set representation Memory used (words)

List 150006
Tree 3911613
Red-Black tree 8193038
Hash table 265559

Notice that a huge amount more is required for the tree structures, because every time a new element is
inserted, part of the tree is rewritten. In the case of the Red-Black tree, rotations involve allocating new
memory too.

2
We can add the type for the union function to our signature:

166 Answers to Questions

module type SetType2 =
sig

type 'a t
val set_of_list : 'a list -> 'a t
val list_of_set : 'a t -> 'a list
val insert : 'a -> 'a t -> 'a t
val size : 'a t -> int
val member : 'a -> 'a t -> bool
val union : 'a t -> 'a t -> 'a t

end

For lists, the union function is easy, we just insert each element of b into the list a. Duplicates will be
removed correctly:

let union a b = List.fold_left (fun x y -> insert y x) a b

For trees and Red-Black trees, we must turn b into a list first, so fold_left can be used, but the solution is
broadly the same.

let union a b = List.fold_left (fun x y -> insert y x) a (list_of_set b)

For hash tables, to preserve the previous tables, we must build lists from both sets, and then build a new
set from the concatenation of those too lists:

let union a b = set_of_list (list_of_set a @ list_of_set b)

The built-in Set module, which is considered in Question 3, provides a particularly efficient union
operation.

3
We write a version of our set signature which is specialized to integers. Then, we use the syntax given
in the question to build the module S. This contains the type S.t, the value S.empty and the functions
S.elements, S.add, S.mem, and S.cardinal, which we can use to write the functions to match our
signature.

Answers to Questions 167

module IntSet :
sig

type t
val set_of_list : int list -> t
val list_of_set : t -> int list
val insert : int -> t -> t
val size : t -> int
val member : int -> t -> bool

end
=

struct
module S =

Set.Make (struct type t = int let compare = compare end)

type t = S.t

let list_of_set s = S.elements s

let set_of_list l = List.fold_right S.add l S.empty

let member = S.mem

let insert = S.add

let size = S.cardinal
end

Now the benchmarking for insertion and membership is simple:

benchmark_intset : string → int list → unit

let benchmark_intset name ns =
let a = Unix.gettimeofday () in
let set = IntSet.set_of_list ns in
let b = Unix.gettimeofday () in

List.iter (fun x -> ignore (IntSet.member x set)) ns;
let c = Unix.gettimeofday () in

Printf.printf
"For %s, insertion took %f, membership %f\n"
name (b -. a) (c -. b)

let _ =
benchmark_intset "ordered" nums;
benchmark_intset "unordered" rand

Here is the output:

For ordered, insertion took 0.056586, membership 0.019593
For unordered, insertion took 0.087148, membership 0.021295

168 Answers to Questions

4
We can change the type thus, with BrR for red and BrB for black:

type 'a t =
Lf

| BrR of 'a t * 'a * 'a t
| BrB of 'a t * 'a * 'a t

Now, the solutions are tedious to write out, but not difficult. The result is Figure A.2.

Chapter 12 (Playing Games)

1
We already know that O wins 131184 times. By a similar use of num_wins we find that X wins 77904 times.
So, as expected, going first is an advantage. We must write another function to find how many draws
there are. A board is drawn if it is full but does not contain a winning configuration of either X or O:

drawn : tree → int

let rec drawn (Move (b, bs)) =
(if

empty b = [] &&
not (won (List.map ((=) O) b)) &&
not (won (List.map ((=) X) b))

then 1 else 0)
+

List.fold_left (+) 0 (List.map drawn bs)

This tells us that there are 46080 drawn games. Since each game must be either won or drawn, the total
number of possible games is 131184 + 77904 + 46080 = 255168. We can check this by writing a function
to find the terminal nodes directly:

terminals : tree → int

let rec terminals (Move (b, bs)) =
(if bs = [] then 1 else 0) +
List.fold_left (+) 0 (List.map terminals bs)

This gives 255168 too.

Answers to Questions 169

module SetRedBlack : sig include SetType end =
struct

type 'a t =
Lf

| BrR of 'a t * 'a * 'a t
| BrB of 'a t * 'a * 'a t

let rec list_of_set s =
match s with

Lf -> []
| BrR (l, x, r) | BrB (l, x, r) ->

x :: list_of_set l @ list_of_set r

let balance t =
match t with

BrB (BrR (BrR (a, x, b), y, c), z, d)
| BrB (BrR (a, x, BrR (b, y, c)), z, d)
| BrB (a, x, BrR (BrR (b, y, c), z, d))
| BrB (a, x, BrR (b, y, BrR (c, z, d))) ->

BrR (BrB (a, x, b), y, BrB (c, z, d))
| BrR (a, b, c) -> BrR (a, b, c)
| BrB (a, b, c) -> BrB (a, b, c)
| Lf -> Lf

let rec insert_inner x s =
match s with

Lf -> BrR (Lf, x, Lf)
| BrR (l, y, r) ->

if x < y
then balance (BrR (insert_inner x l, y, r))
else if x > y then balance (BrR (l, y, insert_inner x r))
else BrR (l, y, r)

| BrB (l, y, r) ->
if x < y

then balance (BrB (insert_inner x l, y, r))
else if x > y then balance (BrB (l, y, insert_inner x r))
else BrB (l, y, r)

let insert x s =
match insert_inner x s with

BrR (l, y, r) | BrB (l, y, r) -> BrB (l, y, r)
| Lf -> assert false

let rec set_of_list l =
match l with

[] -> Lf
| h::t -> insert h (set_of_list t)

let rec size s =
match s with

Lf -> 0
| BrR (l, _, r) | BrB (l, _, r) -> 1 + size l + size r

let rec member x s =
match s with

Lf -> false
| BrR (l, y, r) | BrB (l, y, r) ->

x = y || if x > y then member x r else member x l
end

Figure A.2

170 Answers to Questions

2
We need make only two small changes. Delaying evaluation in the type. . .

type tree = Move of turn list * (unit -> tree list)

. . . and altering next_moves to insert that delay:

next_moves : turn → turn list → tree

let rec next_moves turn board =
let next =

fun () ->
if

won (List.map ((=) O) board) ||
won (List.map ((=) X) board)

then
[]

else
List.map

(next_moves (flip_turn turn))
(List.map (replace turn board) (empty board))

in
Move (board, next)

Now, we can carefully write a function select_case which, given a starting board such as [E; E; E;
E; O; E; E; E; E] and the game tree, returns the portion of the game tree matching that board. Due to
laziness, the rest of the tree is now not explored.

We can now alter num_wins easily for the delayed case, and write a function pos_wins which returns
the number of wins starting from a position like [E; E; E; E; O; E; E; E; E].

select_case : turn list → tree → tree
num_wins : turn → tree → int
pos_wins : turn → turn list → int

let select_case board (Move (_, f)) =
match List.filter (fun (Move (b, _)) -> b = board) (f ()) with
[Move (b, g)] -> g ()

| _ -> raise (Failure "select_case")

let rec num_wins turn (Move (b, bs)) =
(if won (List.map ((=) turn) b) then 1 else 0) +
List.fold_left (+) 0 (List.map (num_wins turn) (bs ()))

let pos_wins turn pos =
List.fold_left (+) 0
(List.map (num_wins turn) (select_case pos game_tree))

Answers to Questions 171

Similarly, we can modify the drawn function to work with the new lazy structure, and write a new function
draws to count the drawn positions from a given starting board such as [E; E; E; E; O; E; E; E; E]:

drawn : tree → int
draws : turn list → int

let rec drawn (Move (b, bs)) =
(if

empty b = [] &&
not (won (List.map ((=) O) b)) &&
not (won (List.map ((=) X) b))

then 1 else 0)
+

List.fold_left (+) 0 (List.map drawn (bs ()))

let draws pos =
List.fold_left (+) 0

(List.map drawn (select_case pos game_tree))

Now we can define starting boards for the centre spot, the middle of a side, and a corner. We can now use
pos_wins and draws, taking account of symmetry to enumerate all the cases:

let centre = [E; E; E; E; O; E; E; E; E]

let side = [E; O; E; E; E; E; E; E; E]

let corner = [O; E; E; E; E; E; E; E; E]

let centre_x_wins = pos_wins X centre

let centre_o_wins = pos_wins O centre

let centre_drawn = draws centre

let side_x_wins = pos_wins X side * 4

let side_o_wins = pos_wins O side * 4

let side_drawn = draws side * 4

let corner_x_wins = pos_wins X corner * 4

let corner_o_wins = pos_wins O corner * 4

let corner_drawn = draws side * 4

This gives the following:

172 Answers to Questions

val centre_x_wins : int = 5616
val centre_o_wins : int = 15648
val centre_drawn : int = 4608
val side_x_wins : int = 40704
val side_o_wins : int = 56928
val side_drawn : int = 20736
val corner_x_wins : int = 31584
val corner_o_wins : int = 58608
val corner_drawn : int = 20736

The total is 255168, of course.

3
The strategy of using the magic square representation is to build a problem which is isomorphic (has the
same essential characteristics – literally the same shape) to the original one, but is easier to work with. Before
building the tree tree, we will need five little functions:

• sum, which checks if a list sums to 15;

• threes, which finds all the combinations of numbers from a list of numbers which are of length
three (the combinations function is from Chapter 10);

• won, which uses threes to check if a list of integers contains a combination of three numbers which
sum to 15;

• drawn which, given the integer lists for X and O, works out if the game has been drawn; and

• possibles which, given all the non-empty squares, lists the empty ones.

sum : int list → bool
threes : α list → α list list
won : int list → bool
drawn : α list → β list → bool
possibles : int list → int list

let sum l = List.fold_left (+) 0 l = 15

let threes l = List.filter (fun l -> length l = 3) (combinations l)

let won l = List.mem true (List.map sum (threes l))

let drawn l l' = length l + length l' = 9

let possibles all =
List.filter

(fun x -> not (List.mem x all))
[1; 2; 3; 4; 5; 6; 7; 8; 9]

Now, the type contains a list of X positions, a list of O positions, and the list of child nodes:

Answers to Questions 173

type tree = Move of int list * int list * tree list

We do not need a type for the turn this time – we can just use a boolean. The function next_moves follows
the usual pattern – if the game is won or drawn, the list of child nodes is empty. Otherwise, we build child
nodes for each possible position the next player could place his piece.

next_moves : int list → int list → bool → tree
game_tree : tree

let rec next_moves xs os o_is_playing =
let next =

if won xs || won os || drawn xs os then [] else
if o_is_playing

then
List.map

(fun new_os -> next_moves xs new_os (not o_is_playing))
(List.map (fun q -> q :: os) (possibles (xs @ os)))

else
List.map

(fun new_xs -> next_moves new_xs os (not o_is_playing))
(List.map (fun q -> q :: xs) (possibles (xs @ os)))

in
Move (xs, os, next)

let game_tree = next_moves [] [] true

The game tree is shown in Figure A.3. We can write a simple xwins function to test our new function
returns the same result as the original.

xwins : tree → int

let rec xwins (Move (xs, os, cs)) =
(if won xs then 1 else 0) +
List.fold_left (+) 0 (List.map xwins cs)

Chapter 13 (Representing Documents)

1
Writing T for the trailer dictionary, we have the graph T → 2 → 3 ←→ 1 → 4.

2
These can be written out by reference to the data structure:

174 Answers to Questions

val game_tree : tree =
Move ([], [],
[Move ([], [1],
[Move ([2], [1],

[Move ([2], [3; 1],
[Move ([4; 2], [3; 1],

[Move ([4; 2], [5; 3; 1],
[Move ([6; 4; 2], [5; 3; 1],

[Move ([6; 4; 2], [7; 5; 3; 1], []);
Move ([6; 4; 2], [8; 5; 3; 1],
[Move ([7; 6; 4; 2], [8; 5; 3; 1], []);
Move ([9; 6; 4; 2], [8; 5; 3; 1], [])]);

Move ([6; 4; 2], [9; 5; 3; 1], [])]);
Move ([7; 4; 2], [5; 3; 1],
[Move ([7; 4; 2], [6; 5; 3; 1],

[Move ([8; 7; 4; 2], [6; 5; 3; 1],
[Move ([8; 7; 4; 2], [9; 6; 5; 3; 1], [])]);

Move ([9; 7; 4; 2], [6; 5; 3; 1], [])]);
Move ([7; 4; 2], [8; 5; 3; 1],
[Move ([6; 7; 4; 2], [8; 5; 3; 1], []);
Move ([9; 7; 4; 2], [8; 5; 3; 1], [])]);

Move ([7; 4; 2], [9; 5; 3; 1], [])]);
Move ([8; 4; 2], [5; 3; 1],
[Move ([8; 4; 2], [6; 5; 3; 1],

[Move ([7; 8; 4; 2], [6; 5; 3; 1],
[Move ([7; 8; 4; 2], [9; 6; 5; 3; 1], [])]);

Move ([9; 8; 4; 2], [6; 5; 3; 1], [])]);
Move ([8; 4; 2], [7; 5; 3; 1], []);
Move ([8; 4; 2], [9; 5; 3; 1], [])]);

Move ([9; 4; 2], [5; 3; 1], [])]);
...]);

...]);
...]);

...]);
...])

Figure A.3

Answers to Questions 175

• Name "/Name"

• String "Quartz Crystal"

• Dictionary [("/Type", Name "/ObjStm"); ("/N", Integer 100); ("/First", Integer 807);
("/Last", Integer 1836); ("/Filter", Name "/FlateDecode")]

• Array [Integer 1; Integer 2; Float 1.5; String "black"]

• Array [Integer 1; Indirect 2]

In the last two examples, we assumed integer where appropriate. Notice that in the last example, the
parsing is somewhat ambiguous – we would need to read all the way to the R to be sure it was not an
array of several integers.

3
Consider the tree Br (Br (Lf, 1, Lf), 2, Br (Lf, 3, Lf)). We will represent it by using nested PDF
dictionaries. A branch will have a /Type key with value /Br. It will have /Left and /Right entries for
the sub-trees. A leaf is indicated simply by /Lf. In the PDF file we would write it like this:

<</Type /Br
/Value 2
/Left <</Type /Br /Value 1 /Left /Lf /Right /Lf>>
/Right <</Type /Br /Value 3 /Left /Lf /Right /Lf>>>>

To construct it from our data type in OCaml:

let tree =
Pdf.Dictionary

[("/Type", Pdf.Name "/Br");
("/Value", Pdf.Integer 2);
("/Left",

Pdf.Dictionary
[("/Type", Pdf.Name "/Br");
("/Value", Pdf.Integer 1);
("/Left", Pdf.Name "/Lf");
("/Right", Pdf.Name "/Lf")]);

("/Right",
Pdf.Dictionary

[("/Type", Pdf.Name "/Br");
("/Value", Pdf.Integer 3);
("/Left", Pdf.Name "/Lf");
("/Right", Pdf.Name "/Lf")])]

4
We must search for dictionary entries inside Pdf.Dictionary, of course, but also inside Pdf.Stream,
which contains a dictionary, and Pdf.Array which may do so too. Two mutually-recursive functions will
do:

176 Answers to Questions

rotate_90 : Pdf.pdfobject → Pdf.pdfobject
rotate_90_dict : string × Pdf.pdfobject → string × Pdf.pdfobject

let rec rotate_90 obj =
match obj with

Pdf.Array objs ->
Pdf.Array (List.map rotate_90 objs)

| Pdf.Dictionary objs ->
Pdf.Dictionary (List.map rotate_90_dict objs)

| Pdf.Stream (dict, str) ->
Pdf.Stream (rotate_90 dict, str)

| x -> x

and rotate_90_dict (k, v) =
match k with
"/Rotate" -> ("/Rotate", Pdf.Integer 90)

| _ -> (k, rotate_90 v)

Chapter 14 (Writing Documents)

1
We can alter the functions string_of_array and string_of_dictionary to simply not output the space
preceding the closing bracket. To remove the initial space requires a little trick. We inspect the length of
the buffer to determine if we are about to output the first item. In that case, no space is written. This is
shown in Figure A.4.

2
The full code can be found in the online resources. We make the following changes:

• Change /Count from 1 to 3.
• Move the /Resources to its own object, number 5.
• Write two new pages, objects 6 and 7.
• Write two new page content streams, 8 and 9.
• Change the /Size from 5 to 10 to account for the new objects.

3
The full code can be found in the online resources. See the hint for a little more help.

Chapter 15 (Pretty Pictures)

1
Since we are working with circles, let us define π:

Answers to Questions 177

string_of_array : Pdf.pdfobject list → string
string_of_dictionary : (string ×Pdf.pdfobject) list → string

let rec string_of_array a =
let b = Buffer.create 100 in

Buffer.add_string b "[";
List.iter

(fun s ->
if Buffer.length b > 1 then Buffer.add_char b ' ';
Buffer.add_string b (string_of_pdfobject s))

a;
Buffer.add_string b "]";
Buffer.contents b

and string_of_dictionary d =
let b = Buffer.create 100 in

Buffer.add_string b "<<";
List.iter

(fun (k, v) ->
if Buffer.length b > 2 then Buffer.add_char b '';
Buffer.add_string b k;
Buffer.add_char b ' ';
Buffer.add_string b (string_of_pdfobject v))

d;
Buffer.add_string b ">>";
Buffer.contents b

Figure A.4

178 Answers to Questions

pi : float

let pi = 4. *. atan 1.

We can write a simple function to return the point at a given angle, distance r from point (x, y):

point : float → float → float → float → float × float

let point x y r angle =
(cos angle *. r +. x, sin angle *. r +. y)

Now, we can build a list of all these points, remembering to stop before we have been around the whole
circle. The argument step is the angle between successive points.

points : float → float → float → float → (float × float) list

let points x y r step =
let n = ref 0
and points = ref [] in
while float_of_int !n *. step < 2. *. r *. pi do

points := point x y r (float_of_int !n *. step) :: !points;
n := !n + 1

done;
!points

Finally, we generate a Move to the first points, Lines to the rest, and a final Close.

circle : float → float → float → Pdfpage.t list
circle_filled : Pdfpage.t list

let circle x y r =
match points x y r (pi /. 20.) with

(x, y)::lines ->
Pdfpage.Move (x, y) ::
List.map (fun (x, y) -> Pdfpage.Line (x, y)) lines @
[Pdfpage.Close]

| _ ->
assert false the points function should never return an empty list

let circle_filled =
circle 300. 300. 100. @ [Pdfpage.Fill]

For our example, we made a filled circle of radius 100 centred at (300, 300) with Pdfpage.Fill:

Answers to Questions 179

2
First, a function to build a pseudo-random circle somewhere on our page, making sure to overlap the
edges:

random_circle : unit → Pdfpage.t list

let random_circle () =
let x = Random.float 700. -. 50.
and y = Random.float 1000. -. 50.
and r = Random.float 100. +. 20. in

circle x y r

Now, a little utility function to build a list of n things when given a function which generates them, such
as random_circle:

many : (unit → α) → int → α list

let rec many f n =
match n with

0 -> []
| _ -> f () :: many f (n - 1)

Now it is simple to build a hundred random grey filled circles and append them all together with
List.concat:

180 Answers to Questions

many_circles : Pdfpage.t list

let many_circles =
List.concat

(List.map
(fun l ->
List.append
(Pdfpage.FillColour (Random.float 1.) :: l)
[Pdfpage.Fill])

(many random_circle 100))

3
We can add FillColourRGB of float * float * float and StrokeColourRGB of float * float * float
to the data type and associated functions, and then modify our previous example:

Answers to Questions 181

many_circles_colour : Pdfpage.t list

let many_circles_colour =
List.concat

(List.map
(fun l ->

List.append
(Pdfpage.FillColourRGB

(Random.float 1., Random.float 1., Random.float 1.)
:: l)

[Pdfpage.Fill])
(many random_circle 100))

If you are reading the PDF ebook version of this book, the following image is in colour:

4
We add LineWidth of float to the data type and associated functions. Now we set the line width and
stroke colour and draw the large circle:

182 Answers to Questions

big_circle : Pdfpage.t
circle_over_circles : Pdfpage.t

let big_circle =
[Pdfpage.LineWidth 5.; Pdfpage.StrokeColour 0.]

@ circle 300. 400. 150.
@ [Pdfpage.Stroke]

let circle_over_circles =
many_circles_colour @ big_circle

5
We add SetClip to the data type and associated functions. Then we set the clip before stroking.

big_clipping_circle : Pdfpage.t list
clipped : Pdfpage.t list

let big_clipping_circle =
[Pdfpage.LineWidth 1.; Pdfpage.StrokeColour 0.] @
circle 300. 400. 150. @
[Pdfpage.SetClip; Pdfpage.Stroke]

let clipped =
big_clipping_circle @ many_circles_colour

Answers to Questions 183

The single path is used both for clipping and for the stroke:

Chapter 16 (Adding Text)

1
We can pull out font size, line spacing and margin easily, defining them at the top of the page. The text
width is derived from the page width and margin. The maximum number of characters in a line can be
calculated using the formula given in the question:

let font_size = 10.0

let line_spacing = 1.1

let margin = 40.0

let text_width = page_width -. margin -. margin

let max_chars = int_of_float (text_width /. font_size *. (5. /. 3))

We can now insert these new names into typeset_line_at:

Pdfpage.SetTextPosition (margin, y);
Pdfpage.SetFontAndSize ("/F0", font_size);

We pass max_chars to clean_lines and alter our call to downfrom:

let ls = clean_lines (lines max_chars words) in

184 Answers to Questions

downfrom
(font_size *. line_spacing)
(page_height -. margin -. line_spacing) (List.length ls) 0

Here is an example of the new program, with text typeset on a much smaller page (it runs off the bottom,
of course):

One morning, when Gregor Samsa woke
from troubled dreams, he found
himself transformed in his bed into
a horrible vermin. He lay on his
armour-like back, and if he lifted
his head a little he could see his
brown belly, slightly domed and
divided by arches into stiff
sections. The bedding was hardly
able to cover it and seemed ready
to slide off any moment. His many
legs, pitifully thin compared with
the size of the rest of him, waved
about helplessly as he looked.
"What’s happened to me?" he
thought. It wasn’t a dream. His
room, a proper human room although
a little too small, lay peacefully
between its four familiar walls. A
collection of textile samples lay
spread out on the table - Samsa was
a travelling salesman - and above
it there hung a picture that he had
recently cut out of an illustrated
magazine and housed in a nice,
gilded frame. It showed a lady
fitted out with a fur hat and fur
boa who sat upright, raising a
heavy fur muff that covered the
whole of her lower arm towards the
viewer.
Gregor then turned to look out the
window at the dull weather. Drops
of rain could be heard hitting the
pane, which made him feel quite
sad. "How about if I sleep a little
bit longer and forget all this
nonsense", he thought, but that was
something he was unable to do
because he was used to sleeping on
his right, and in his present state
couldn’t get into that position.
However hard he threw himself onto
his right, he always rolled back to
where he was. He must have tried it
a hundred times, shut his eyes so
that he wouldn’t have to look at
the floundering legs, and only
stopped when he began to feel a
mild, dull pain there that he had
never felt before.
"Oh, God", he thought, "what a
strenuous career it is that I’ve
chosen! Travelling day in and day
out. Doing business like this takes
much more effort than doing your
own business at home, and on top of
that there’s the curse of
travelling, worries about making
train connections, bad and
irregular food, contact with
different people all the time so
that you can never get to know
anyone or become friendly with
them. It can all go to Hell!" He
felt a slight itch up on his belly;
pushed himself slowly up on his
back towards the headboard so that
he could lift his head better;
found where the itch was, and saw
that it was covered with lots of
little white spots which he didn’t
know what to make of; and when he
tried to feel the place with one of
his legs he drew it quickly back
because as soon as he touched it he
was overcome by a cold shudder.
He slid back into his former
position. "Getting up early all the
time", he thought, "it makes you
stupid. You’ve got to get enough
sleep. Other travelling salesmen
live a life of luxury. For
instance, whenever I go back to the
guest house during the morning to
copy out the contract, these
gentlemen are always still sitting
there eating their breakfasts. I
ought to just try that with my
boss; I’d get kicked out on the
spot. But who knows, maybe that
would be the best thing for me. If
I didn’t have my parents to think
about I’d have given in my notice a
long time ago, I’d have gone up to
the boss and told him just what I
think, tell him everything I would,
let him know just what I feel. He’d
fall right off his desk! And it’s a
funny sort of business to be
sitting up there at your desk,
talking down at your subordinates
from up there, especially when you
have to go right up close because
the boss is hard of hearing. Well,
there’s still some hope; once I’ve
got the money together to pay off
my parents’ debt to him - another
five or six years I suppose -
that’s definitely what I’ll do.
That’s when I’ll make the big
change. First of all though, I’ve
got to get up, my train leaves at
five."

2
We can implement this by manually inserting space characters into the buffer in lines_inner following
every newline (i.e. at the beginning of the second and subsequent paragraphs). This is shown in Figure A.5.
Notice the use of an optional argument in lines. We can now alter one line in typeset_page:

let ls = clean_lines (lines max_chars ~indent:8 words) in

The result is shown in Figure A.6.

3
The page height can be calculated easily:

let text_height = page_height -. margin -. margin

Now, we can use Pdfpage.SetCharacterSpacing in typeset_line_at, adding an extra argument for
the spacing:

Answers to Questions 185

lines_inner : Pdfpage.t list
lines : float → ?indent:int → string list → string list list

let rec lines_inner ls b width indent words =
match words with

[] ->
if Buffer.length b > 0 then
List.rev (Partial (Buffer.contents b) :: ls)

else
List.rev ls

| "\n"::t ->
let b’ = Buffer.create width in
for x = 1 to indent do Buffer.add_char b' ' ' done;
lines_inner

(Partial (Buffer.contents b) :: ls) b' width indent t
| word::t ->

if Buffer.length b = 0 String.length word > width then
lines_inner
(Full word :: ls) (Buffer.create width) width indent t

else if String.length word + Buffer.length b < width then
begin

Buffer.add_string b word;
if Buffer.length b < width then Buffer.add_char b ' ';
lines_inner ls b width indent t

end
else

lines_inner
(Full (Buffer.contents b) :: ls)
(Buffer.create width) width indent (word :: t)

let lines width ?(indent=0) words =
lines_inner [] (Buffer.create width) width indent words

Figure A.5

186 Answers to Questions

One morning, when Gregor Samsa woke from troubled dreams, he found himself
transformed in his bed into a horrible vermin. He lay on his armour-like back, and
if he lifted his head a little he could see his brown belly, slightly domed and
divided by arches into stiff sections. The bedding was hardly able to cover it and
seemed ready to slide off any moment. His many legs, pitifully thin compared with
the size of the rest of him, waved about helplessly as he looked.
 "What’s happened to me?" he thought. It wasn’t a dream. His room, a proper
human room although a little too small, lay peacefully between its four familiar
walls. A collection of textile samples lay spread out on the table - Samsa was a
travelling salesman - and above it there hung a picture that he had recently cut
out of an illustrated magazine and housed in a nice, gilded frame. It showed a
lady fitted out with a fur hat and fur boa who sat upright, raising a heavy fur
muff that covered the whole of her lower arm towards the viewer.
 Gregor then turned to look out the window at the dull weather. Drops of
rain could be heard hitting the pane, which made him feel quite sad. "How about if
I sleep a little bit longer and forget all this nonsense", he thought, but that
was something he was unable to do because he was used to sleeping on his right,
and in his present state couldn’t get into that position. However hard he threw
himself onto his right, he always rolled back to where he was. He must have tried
it a hundred times, shut his eyes so that he wouldn’t have to look at the
floundering legs, and only stopped when he began to feel a mild, dull pain there
that he had never felt before.
 "Oh, God", he thought, "what a strenuous career it is that I’ve chosen!
Travelling day in and day out. Doing business like this takes much more effort
than doing your own business at home, and on top of that there’s the curse of
travelling, worries about making train connections, bad and irregular food,
contact with different people all the time so that you can never get to know
anyone or become friendly with them. It can all go to Hell!" He felt a slight itch
up on his belly; pushed himself slowly up on his back towards the headboard so
that he could lift his head better; found where the itch was, and saw that it was
covered with lots of little white spots which he didn’t know what to make of; and
when he tried to feel the place with one of his legs he drew it quickly back
because as soon as he touched it he was overcome by a cold shudder.
 He slid back into his former position. "Getting up early all the time", he
thought, "it makes you stupid. You’ve got to get enough sleep. Other travelling
salesmen live a life of luxury. For instance, whenever I go back to the guest
house during the morning to copy out the contract, these gentlemen are always
still sitting there eating their breakfasts. I ought to just try that with my
boss; I’d get kicked out on the spot. But who knows, maybe that would be the best
thing for me. If I didn’t have my parents to think about I’d have given in my
notice a long time ago, I’d have gone up to the boss and told him just what I
think, tell him everything I would, let him know just what I feel. He’d fall right
off his desk! And it’s a funny sort of business to be sitting up there at your
desk, talking down at your subordinates from up there, especially when you have to
go right up close because the boss is hard of hearing. Well, there’s still some
hope; once I’ve got the money together to pay off my parents’ debt to him -
another five or six years I suppose - that’s definitely what I’ll do. That’s when
I’ll make the big change. First of all though, I’ve got to get up, my train leaves
at five."

Figure A.6

Answers to Questions 187

typeset_line_at : float → string → float → Pdfpage.t list

let typeset_line_at spacing line y =
[Pdfpage.BeginText;
Pdfpage.SetCharacterSpacing spacing;
Pdfpage.SetTextPosition (margin, y);
Pdfpage.SetFontAndSize ("/F0", font_size);
Pdfpage.ShowText line;
Pdfpage.EndText]

The spacing is calculated as prescribed, only for Full lines:

calculate_spacing : float → string → float

let calculate_spacing width line =
match line with
Full s ->
float (width - String.length s) /.
float (String.length s - 1) *. font_size *. (3. /. 5.)

| Partial s -> 0.

In a revised typeset_page, we can calculate the correct spacings, passing them to typeset_line_at:

typeset_page : string → Pdfpage.t list

let typeset_page text =
let words = words_of_input (Input.input_of_string text) in
let ls = lines max_chars ~indent:8 words in
let spacings = List.map (calculate_spacing max_chars) ls in
let positions =

downfrom
(font_size *. line_spacing)
(page_height -. margin -. line_spacing) (List.length ls) 0

in
List.concat

(List.map3
typeset_line_at spacings (clean_lines ls) positions)

Here is an example page. You can see that the lines are fully justified – flush to the left and right margins.

188 Answers to Questions

One morning, when Gregor Samsa woke from troubled dreams, he found himself
transformed in his bed into a horrible vermin. He lay on his armour-like back, and
if he lifted his head a little he could see his brown belly, slightly domed and
divided by arches into stiff sections. The bedding was hardly able to cover it and
seemed ready to slide off any moment. His many legs, pitifully thin compared with
the size of the rest of him, waved about helplessly as he looked.
 "What’s happened to me?" he thought. It wasn’t a dream. His room, a proper
human room although a little too small, lay peacefully between its four familiar
walls. A collection of textile samples lay spread out on the table - Samsa was a
travelling salesman - and above it there hung a picture that he had recently cut
out of an illustrated magazine and housed in a nice, gilded frame. It showed a
lady fitted out with a fur hat and fur boa who sat upright, raising a heavy fur
muff that covered the whole of her lower arm towards the viewer.
 Gregor then turned to look out the window at the dull weather. Drops of
rain could be heard hitting the pane, which made him feel quite sad. "How about if
I sleep a little bit longer and forget all this nonsense", he thought, but that
was something he was unable to do because he was used to sleeping on his right,
and in his present state couldn’t get into that position. However hard he threw
himself onto his right, he always rolled back to where he was. He must have tried
it a hundred times, shut his eyes so that he wouldn’t have to look at the
floundering legs, and only stopped when he began to feel a mild, dull pain there
that he had never felt before.
 "Oh, God", he thought, "what a strenuous career it is that I’ve chosen!
Travelling day in and day out. Doing business like this takes much more effort
than doing your own business at home, and on top of that there’s the curse of
travelling, worries about making train connections, bad and irregular food,
contact with different people all the time so that you can never get to know
anyone or become friendly with them. It can all go to Hell!" He felt a slight itch
up on his belly; pushed himself slowly up on his back towards the headboard so
that he could lift his head better; found where the itch was, and saw that it was
covered with lots of little white spots which he didn’t know what to make of; and
when he tried to feel the place with one of his legs he drew it quickly back
because as soon as he touched it he was overcome by a cold shudder.
 He slid back into his former position. "Getting up early all the time", he
thought, "it makes you stupid. You’ve got to get enough sleep. Other travelling
salesmen live a life of luxury. For instance, whenever I go back to the guest
house during the morning to copy out the contract, these gentlemen are always
still sitting there eating their breakfasts. I ought to just try that with my
boss; I’d get kicked out on the spot. But who knows, maybe that would be the best
thing for me. If I didn’t have my parents to think about I’d have given in my
notice a long time ago, I’d have gone up to the boss and told him just what I
think, tell him everything I would, let him know just what I feel. He’d fall right
off his desk! And it’s a funny sort of business to be sitting up there at your
desk, talking down at your subordinates from up there, especially when you have to
go right up close because the boss is hard of hearing. Well, there’s still some
hope; once I’ve got the money together to pay off my parents’ debt to him -
another five or six years I suppose - that’s definitely what I’ll do. That’s when
I’ll make the big change. First of all though, I’ve got to get up, my train leaves
at five."

4
The answer to this question is too long to be contained in the text. Consult the online resources for the
program itself. An example multi-page output is shown in Figure A.7.

Answers to Questions 189

One morning, when Gregor Samsa woke from
troubled dreams, he found himself
transformed in his bed into a horrible
vermin. He lay on his armour-like back,
and if he lifted his head a little he
could see his brown belly, slightly
domed and divided by arches into stiff
sections. The bedding was hardly able to
cover it and seemed ready to slide off
any moment. His many legs, pitifully
thin compared with the size of the rest
of him, waved about helplessly as he
looked.
 "What’s happened to me?" he
thought. It wasn’t a dream. His room, a
proper human room although a little too
small, lay peacefully between its four
familiar walls. A collection of textile
samples lay spread out on the table -
Samsa was a travelling salesman - and
above it there hung a picture that he
had recently cut out of an illustrated

magazine and housed in a nice, gilded
frame. It showed a lady fitted out with
a fur hat and fur boa who sat upright,
raising a heavy fur muff that covered
the whole of her lower arm towards the
viewer.
 Gregor then turned to look out
the window at the dull weather. Drops of
rain could be heard hitting the pane,
which made him feel quite sad. "How
about if I sleep a little bit longer and
forget all this nonsense", he thought,
but that was something he was unable to
do because he was used to sleeping on
his right, and in his present state
couldn’t get into that position. However
hard he threw himself onto his right, he
always rolled back to where he was. He
must have tried it a hundred times, shut
his eyes so that he wouldn’t have to
look at the floundering legs, and only
stopped when he began to feel a mild,

dull pain there that he had never felt
before.
 "Oh, God", he thought, "what a
strenuous career it is that I’ve chosen!
Travelling day in and day out. Doing
business like this takes much more
effort than doing your own business at
home, and on top of that there’s the
curse of travelling, worries about
making train connections, bad and
irregular food, contact with different
people all the time so that you can
never get to know anyone or become
friendly with them. It can all go to
Hell!" He felt a slight itch up on his
belly; pushed himself slowly up on his
back towards the headboard so that he
could lift his head better; found where
the itch was, and saw that it was
covered with lots of little white spots
which he didn’t know what to make of;
and when he tried to feel the place with

one of his legs he drew it quickly back
because as soon as he touched it he was
overcome by a cold shudder.
 He slid back into his former
position. "Getting up early all the
time", he thought, "it makes you stupid.
You’ve got to get enough sleep. Other
travelling salesmen live a life of
luxury. For instance, whenever I go back
to the guest house during the morning to
copy out the contract, these gentlemen
are always still sitting there eating
their breakfasts. I ought to just try
that with my boss; I’d get kicked out on
the spot. But who knows, maybe that
would be the best thing for me. If I
didn’t have my parents to think about
I’d have given in my notice a long time
ago, I’d have gone up to the boss and
told him just what I think, tell him
everything I would, let him know just
what I feel. He’d fall right off his

desk! And it’s a funny sort of business
to be sitting up there at your desk,
talking down at your subordinates from
up there, especially when you have to go
right up close because the boss is hard
of hearing. Well, there’s still some
hope; once I’ve got the money together
to pay off my parents’ debt to him -
another five or six years I suppose -
that’s definitely what I’ll do. That’s
when I’ll make the big change. First of
all though, I’ve got to get up, my train
leaves at five."

Figure A.7

Hints for Questions

Chapter 1
Unravelling “Fold”

1
What must the accumulator start at? What opera-
tion must we perform each time? Consider the sum
function from the text as a starting point.

2
We need to ignore each element, just incrementing
an accumulator when we see each one. The final
value of the accumulator will then be the length of
the list. What is the initial accumulator?

3
A good way to deal with the fact that an empty list
has no last element would be to return an option
type.

4
These sorts of folds producing lists have an accu-
mulator which is a list type – you might start at the
empty list.

5
The type will be the same as for List.mem. How
do we keep track of whether or not we have seen a
matching element? What is the initial accumulator?

6
This will involve a string accumulator and the string
concatenation operator. How to we ensure there is
not an excess space before or after the sentence?

7
The built-in max operator returns the larger of two
values.

8
You can use the Standard Library function
Unix.gettimeofday to help time the functions.

Chapter 2
Being Lazy

1
This is very similar to lseq in the text.

2
Construct by analogy to the same function on ordi-
nary lists. Remember one needs to force evaluation
to get at the tail.

3
How do we know when we have reached the end
of the input list and must start again? What do we
do if the input list is empty?

191

192 Hints for Questions

4
Consider the definition of fibonacci numbers. Split
into a function which builds the lazy list given two
numbers, and the construction of the list itself.

5
The type of the function will beα lazylist→ α lazylist
× α lazylist. You will need to force the evaluation
of the tail of the input list twice to yield the heads
of the two output lists, and then work out how to
produce the tails.

6
Write a function which builds the alphabetic string
from a number. Then, some of the generic lazy
list handling functions from the text can be used
to build the lazy list itself.

Chapter 3
Named Tuples with Records

1
What is a reference really?

2
Look at the functions Unix.time and
Unix.localtime. You will need to deal with con-
version of day-of-week and month from integers to
strings yourself, but this is not difficult.

4
Records types can be parametrized, just like other
data types.

5
See the documentation for a) Gc.stat and b)
Gc.set and Gc.get.

Chapter 4
Generalized Input/Output

1
A simple modification of input_of_string.

2
Use a Buffer.t to accumulate the characters.

3
The new field will have type unit → char option.

4
The new field will have type unit→ int. For input_-
of_channel and input_of_string, use exception
handling to return the special value. Consider giv-
ing the special value −1 a name.

5
Check for a newline character on each input_char,
raising End_of_file. Can you use input_string
with the new channel you have created to return the
user input?

6
The Buffer module already contains ideal functions
for this.

Chapter 5
Streams of Bits

1
What is the test for being able to read a whole byte
at a time? What do we do if the condition is met? If
it is not?

2
Just replace the integer functions with ones from the
Int32 module.

Hints for Questions 193

3
What is the test for being able to write a whole byte
at a time? What do we do if the condition is met? If
it is not?

4
Just replace the integer functions with ones from the
Int32 module.

5
Try adding a rewind method to your output type,
which goes back one byte. Now extend output_-
of_string appropriately.

Chapter 6
Compressing Data

1
Use list processing functions over a list of inte-
gers representing the data. For testing purposes,
re-use our int_list_of_string and string_of_-
int_list functions.

2
Carefully define a suitable data type for the tree –
the data will all be at the fringes of the tree, since no
code is a prefix of another. Write a function to add
a code to the tree. Now, repeated insertion can be
used to build the whole tree.

4
We can re-use the read_up_to function, building
up two histograms – one for white runs and one for
black runs.

Chapter 7
Labelled and Optional
Arguments

1
Consider what happens if α is int.

2
Perhaps define one or more new types.

3
Consider which functions have two or more argu-
ments of the same type. We can add labels to those
arguments only and wrap the function up.

4
We can use an optional argument for the accumula-
tor.

Chapter 8
Formatted Printing

1
Consider Printf.bprintf as a way to accumulate
the parts. What is special about the last element?
What if there is no last element?

2
There is a format specifier for hexadecimal numbers.
Consider what happens with very small character
codes.

Chapter 9
Searching for Things

1
The at function from the chapter may be re-used
here, in both parts of the question.

2
Start by writing a function which gives the length
of the longest prefix of a pattern at the beginning of
a list. Now wrap it in another which works through
the whole list.

194 Hints for Questions

3
The expression Unix.gettimeofday () gives a
floating-point number representing the current
time.

4
Add a case to the inner match. It must manually
check the next letter in the pattern matches the next
letter in the string (if it exists).

5
This does not require altering the search code itself –
one can just preprocess the pattern and string. There
is a function String.uppercase in the Standard Li-
brary.

Chapter 10
Finding Permutations

1
What is the base case? For the main case, first calcu-
late the combinations of the tail by recursion. What
can you do now?

2
You can build this from functions we have already
written.

3
What is the base case? You will need to keep a
counter to make sure we only generate lists of the
given length.

4
Consider using the swap function we defined in the
main text.

5
Instead of using indices for the “first” and “last”,
use the values themselves. Pull the list representing
the old permutation apart, and rearrange it until
you have the next.

Chapter 11
Making Sets

1
In the documentation for the Gc module, you will
find the function Gc.counters and a description of
how to calculate the total amount of memory allo-
cated since the program began.

2
Add a union function to the signature, with the type
α t → α t → α t and then a union function to the
struct for each set representation.

3
You can include the given code inside the structure
of the new module. Now, you can set the type t to
be equal to S.t, the type of these new sets.

4
Alter the type first. The changes to each function
then follow relatively easily.

Chapter 12
Playing Games

1
We already have code to find the number of X wins.
What are the conditions for a game being drawn?

2
It is only necessary to alter the type tree and the
function next_moves, and only a little. Now we
need a function to extract the part of the tree which
begins with O in the centre slot. Once we have this,
simple modifications of our functions for counting
wins and draws will do the job.

Hints for Questions 195

3
There is no need to worry about the order of the
numbers in the square – the tree will have the same
essential characteristics regardless.

Chapter 13
Representing Documents

3
A structure built from nested dictionaries would be
suitable.

4
Consider everywhere a dictionary entry might ap-
pear. The function or functions will be recursive,
following the general pattern of the data structure.

Chapter 14
Writing Documents

1
Removing the space at the end is simple. How can
we detect if we are about to output the first item,
and thus do not want a space?

2
Remember to alter the /Size entry, and to change
/Indirect entries as required to reflect the new
structure.

3
For the content stream in the “Hello, World!” file,
one long row is sufficient. However, when encod-
ing other example content streams, consult the PDF
specification to ensure the file is still valid. To test,
open in your favourite PDF reader.

Chapter 15
Pretty Pictures

1
We need to generate a set of points on the circle, and
then they can be built into a path with Move, Line,
and Close. This path can then be used with Fill to
build the final page content.

2
First write a function to generate a path for a pseudo-
random circle using a function we have previously
written. Now FillColour and Fill can be added
for each one, and the final list of operators produced.

3
We add FillColourRGB and StrokeColourRGB
items to the data type and its associated functions.
Then we can substitute them into the previous an-
swer.

Chapter 16
Adding Text

1
You need to alter typeset_line_at, clean_lines,
and downfrom once you have defined the new val-
ues.

2
Try just adding eight space characters after each new
line in lines_inner.

3
If there are n characters, we must insert n− 1 pieces
of space between them, each of equal size.

4
To make the construction of the multipage docu-
ment simpler, consider choosing carefully the order
(and hence numbering) of the objects in the file.

Coping with Errors

It is very hard to write even small programs correctly the first time. An unfortunate but inevitable part of
programming is the location and fixing of mistakes. OCaml has a range of messages to help you with this
process.

Here are descriptions of the common messages OCaml prints when a program cannot be accepted or
when running it causes a problem (a so-called “run-time error”). We also describe warnings OCaml prints
to alert the programmer to a program which, though it can be accepted for evaluation, might contain
mistakes.

ERRORS

These are messages printed when an expression could not be accepted for evaluation, due to being
malformed in some way. No evaluation is attempted. You must fix the expression and try again.

Syntax error

This error occurs when OCaml finds that the program text contains things which are not valid words (such
as if, let etc.) or other basic parts of the language, or when they exist in invalid combinations – this is
known as syntax. Check carefully and try again.

OCaml

#1 +;;
Error: syntax error

OCaml has underlined where it thinks the error is. Since this error occurs for a wide range of different
mistakes and problems, the underlining may not pinpoint the exact position of your mistake.

Unbound value . . .

This error occurs when you have mentioned a name which has not been defined (technically “bound to a
value”). This might happen if you have mistyped the name.

OCaml

197

198 Coping with Errors

x + 1;;
Error: Unbound value x

In our example x is not defined, so it has been underlined.

This expression has type . . . but an expression was expected of
type . . .

You will see this error very frequently. It occurs when the expression’s syntax is correct (i.e. it is made
up of valid words and constructs), and OCaml has moved on to type-checking the expression prior to
evaluation. If there is a problem with type-checking, OCaml shows you where a mismatch between the
expected and actual type occurred.

OCaml

1 + true;;
Error: This expression has type bool but an expression was expected of type

int

In this example, OCaml is looking for an integer on the right hand side of the + operator, and finds
something of type bool instead.

It is not always as easy to spot the real source of the problem, especially if the function is recursive.
Nevertheless, a careful look at the program will often shine light on the problem – look at each function
and its arguments, and try to find your mistake.

This function is applied to too many arguments

Exactly what it says. The function name is underlined.

OCaml

let f x = x + 1;;
val f : int -> int = <fun>
f x y;;
Error: This function is applied to too many arguments;
maybe you forgot a `;'

The phrase “maybe you forgot a ‘;’ ” applies to imperative programs where accidently missing out a ‘;’
between successive function applications might commonly lead to this error.

Unbound constructor . . .

This occurs when a constructor name is used which is not defined.

OCaml

type t = Roof | Wall | Floor;;

Coping with Errors 199

type t = Roof | Wall | Floor
Window;;
Error: Unbound constructor Window

OCaml knows it is a constructor name because it has an initial capital letter.

The constructor . . . expects . . . argument(s), but is applied here to
. . . argument(s)

This error occurs when the wrong kind of data is given to a constructor for a type. It is just another type
error, but we get a specialized message.

OCaml

type p = A of int | B of bool;;
type p = A of int | B of bool
A;;
Error: The constructor A expects 1 argument(s),

but is applied here to 0 argument(s)

RUN-TIME ERRORS

In any programming language powerful enough to be of use, some errors cannot be detected before
attempting evaluation of an expression (until “run-time”). The exception mechanism is for handling and
recovering from these kinds of problems.

Stack overflow during evaluation (looping recursion?)

This occurs if the function builds up a working expression which is too big. This might occur if the function
is never going to stop because of a programming error, or if the argument is just too big.

OCaml

let rec f x = 1 + f (x + 1);;
val f : int -> int = <fun>
f 0;;
Stack overflow during evaluation (looping recursion?).

Find the cause of the unbounded recursion, and try again. If it is really not a mistake, rewrite the function
to use an accumulating argument (and so, to be tail recursive).

Exception: Match_failure . . .

This occurs when a pattern match cannot find anything to match against. You would have been warned
about this possibility when the program was originally entered. For example, if the following function f
were defined as

200 Coping with Errors

let f x = match x with 0 -> 1

then using the function with 1 as an argument would produce:

OCaml

f 1;;
Exception: Match_failure ("//toplevel//", 1, 10).

In this example, the match failure occurred in the top level (i.e. the interactive OCaml we are using), at
line one, character ten.

Exception: . . .

This is printed if an un-handled exception reaches OCaml.

OCaml

exception Exp of string;;
exception Exp of string
raise (Exp "Failed");;
Exception: Exp "Failed".

This can occur for built-in exceptions like Division_by_Zero or Not_found or ones the user has defined
like Exp above.

WARNINGS

Warnings do not stop an expression being accepted or evaluated. They are printed after an expression is
accepted but before the expression is evaluated. Warnings are for occasions where OCaml is concerned
you may have made a mistake, even though the expression is not actually malformed. You should check
each new warning in a program carefully.

This pattern-matching is not exhaustive

This warning is printed when OCaml has determined that you have missed out one or more cases in a
pattern match. This could result in a Match_failure exception being raised at run-time.

OCaml

let f x = match x with 0 -> 1;;
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
1
val f : int -> int = <fun>

Coping with Errors 201

Helpfully, it is able to generate an example of something the pattern match does not cover, so this should
give you a hint about what has been missed out. You may ignore the warning if you are sure that, for
other reasons, this case can never occur.

This match case is unused

This occurs when two parts of the pattern match cover the same case. In this situation, the second one
could never be reached, so it is almost certain the programmer has made a mistake.

OCaml

let f x = match x with _ -> 1 | 0 -> 0;;
Warning 11: this match case is unused.
val f : int -> int = <fun>

In this case, the first case matches everything, so the second cannot ever match.

This expression should have type unit

Sometimes when writing imperative programs, we ignore the result of some side-effect-producing function.
However, this can indicate a mistake.

OCaml

f 1; 2;;
Warning 10: this expression should have type unit.
- : int = 2

It is better to use the built-in ignore function in these cases, to avoid this warning:

OCaml

ignore (f 1); 2;;
- : int = 2

The ignore function has type α → unit. It has no side-effect.

Index

(), xi
*, ix
**, xi
*., xi
+, ix
+., xi
-, ix
-., xi
/, ix
/., xi
::, x
:=, xi
=, ix
>, ix
&&, ix

accumulator, 2
append, x
array, xi
array, xi
ArrayLabels, 55

balanced tree, 85
begin, xi
binary search tree, 83
bit stream, 27
bitwise logical AND, 27
bool, ix
Buffer.t, 23
bytecode, xi

CCITT, 39
channel, 21
char, ix
close path, 117
close_in, xi
close_out, xi
compression, 35
cons, x

constructor, x
conversion specification, 57

data
compression, 35
decompression, 35

decompression, 35
delaying evaluation, 11
dictionary order, 74
do, xi
done, xi

end, xi
End_of_file, 22
exception, x
exception, x

false, ix
fax

compression, 39
decompression, 39

fill path, 117
floating-point number, xi
flush output bit stream, 31
fold, 1

over trees, 5
for, xi
forcing evaluation, 10
format string, 57
formatted printing, 57
fun, ix
function, ix

game tree, 93

hash
function, 89
table, 89

Hashtbl, 89

head, x
function, 9

identity element, 2
if. . .then. . .else. . . , ix
in_channel, xi
include, 81
input channel, 21
input_char, xi
int, ix
interface, xi
interleave lazy lists, 12

labelled argument, 51
labelled modules, 55
labels

partial application, 52
lazy list, 9
let, ix
let rec, ix
lexicographic order, 74
list, x
list, x
List.fold_left, 1
List.fold_right, 1
List.map

with fold_right, 3
ListLabels, 55
log, xi
logical shift left, 28

match, x
max_float, xi
max_int, ix
min_float, xi
min_int, ix
module, xi
module, 81
More, xiii

203

204 Index

more-ocaml, xiii
mutable record field, 18

name, ix
native code, xi
noughts and crosses, 93

ocamlc, xi
ocamlopt, xi
raise, x
OPAM, xiii
open_in, xi
open_out, xi
optional argument, 51, 53

default value, 55
out_channel, xi
output channel, 21
output_char, xi

partial application, x
pattern, x, 63
pattern matching, x
PDF, 101

array, 102
coordinates, 118
dictionary, 102
graphics, 117
indirect reference, 103
name, 102

operand, 117
operator, 117
stream, 103
text, 123
writing, 107

permutation, 71
polymorphic, x
Printf.printf, 57
Printf.sprintf, 57
punning, 52

raise, x
record, 15

field, 15
Red-Black tree, 85
ref, xi
reference, xi
rewind function, 23

searching, 63
in lists, 63
in strings, 64

set, 79
made from lists, 79

sig, 81
sqrt, xi
Standard Library, xi
standard output, 21
StdLabels, 55

string, ix
string, ix
StringLabels, 55
stroke path, 117
struct, 81

tail, x
tail function, 9
tail recursion, 73
TCP, 29
text

line breaking, 126
showing, 127
splitting into lines, 123

tic-tac-toe, 93
trailer dictionary, 103
true, ix
try, x
tuple, ix
type, x
type, x
typesetting, 123

unit, xi
Util, xiii

while, xi
with, x

	Summary of Basic OCaml
	Our Working Environment
	Unravelling "Fold"
	Being Lazy
	Named Tuples with Records
	Generalized Input/Output
	Streams of Bits
	Compressing Data
	Labelled and Optional Arguments
	Formatted Printing
	Searching for Things
	Finding Permutations
	Making Sets
	Playing Games
	Generating PDF Documents - An Extended Example
	Representing Documents
	Writing Documents
	Pretty Pictures
	Adding Text
	Answers to Questions
	Hints for Questions
	Coping with Errors
	Index

